钢桁架结构稳定性与两层面强度优化设计研究

杨绿峰, 宋沙沙, 刘嘉达仁

杨绿峰, 宋沙沙, 刘嘉达仁. 钢桁架结构稳定性与两层面强度优化设计研究[J]. 工程力学, 2020, 37(1): 207-217,256. DOI: 10.6052/j.issn.1000-4750.2019.03.0095
引用本文: 杨绿峰, 宋沙沙, 刘嘉达仁. 钢桁架结构稳定性与两层面强度优化设计研究[J]. 工程力学, 2020, 37(1): 207-217,256. DOI: 10.6052/j.issn.1000-4750.2019.03.0095
YANG Lu-feng, SONG Sha-sha, LIU Jia-da-ren. STABILITY AND OPTIMUM DESIGN OF TWO-LEVEL STRENGTH FOR STEEL TRUSSES[J]. Engineering Mechanics, 2020, 37(1): 207-217,256. DOI: 10.6052/j.issn.1000-4750.2019.03.0095
Citation: YANG Lu-feng, SONG Sha-sha, LIU Jia-da-ren. STABILITY AND OPTIMUM DESIGN OF TWO-LEVEL STRENGTH FOR STEEL TRUSSES[J]. Engineering Mechanics, 2020, 37(1): 207-217,256. DOI: 10.6052/j.issn.1000-4750.2019.03.0095

钢桁架结构稳定性与两层面强度优化设计研究

基金项目: 国家自然科学基金重点项目(51738004);国家自然科学基金项目(51478125)
详细信息
    作者简介:

    宋沙沙(1995-),女,江西九江人,硕士生,主要从事工程结构承载力分析设计研究(E-mail:sss691021@126.com);刘嘉达仁(1993-),男,山东菏泽人,博士生,主要从事工程结构承载力分析设计研究(E-mail:jiadaren@ualberta.ca).

    通讯作者:

    杨绿峰(1966-),男,河南鲁山人,教授,博士,主要从事工程结构承载力及耐久性研究(E-mail:lfyang@gxu.edu.cn).

  • 中图分类号: TU323.4

STABILITY AND OPTIMUM DESIGN OF TWO-LEVEL STRENGTH FOR STEEL TRUSSES

  • 摘要: 现行桁架结构优化设计方法难以同时满足构件和体系两层面强度需求。鉴于此,利用弹性模量缩减法研究建立了考虑稳定性影响的桁架结构两层面强度优化设计的改进均匀承载法。在桁架杆件的截面轴向强度中引入压杆稳定系数,据此建立考虑稳定性影响的桁架杆件单元承载比计算表达式。根据弹性模量缩减法迭代首步与末步的构件承载比分别确定桁架在构件和体系两个层面的强度系数,建立构件与体系两层面强度之间的显性关系式按照两层面强度系数的目标值调整各构件的截面强度,利用构件承载比均匀度建立桁架结构优化设计的迭代收敛判据。通过对比分析,验证了该文方法建立的结构设计方案,取得了较好经济效果,克服了现行桁架结构优化设计方法难以满足桁架两层面强度需求的缺陷。
    Abstract: The traditional truss optimal design methods can hardly satisfy the strength requirements at both component-and system-levels simultaneously. In order to overcome this problem, an improved method of uniform bearing criterion was proposed for the optimal design of two-level strength of steel trusses using the elastic modulus reduction method, considering the effect of structural stability. Firstly, the stability coefficient was introduced into the sectional compressive strength for components of steel trusses, so that the element bearing ratio was developed for elements of a steel bar under the influence of structural stability. Then, the strength coefficients at component-and system-levels were determined respectively, using the component bearing ratio in the first and last iterative steps of the elastic modulus reduction method. The relationship between the two-level strength coefficients was presented explicitly. Furthermore, each component strength was adjusted in terms of prescribed targeted two-level strength coefficients, while the convergence criterion was proposed for the trusses optimal design based on the uniformity of component bearing ratios. Finally, it was demonstrated that the proposed method obtained a design scheme for steel trusses with lower cost, overcoming the limitation that the traditional optimum methods cannot meet the requirement of two-level strength.
  • [1] Schevenels M, Mcginn S, Rolvink A, et al. An optimality criteria based method for discrete design optimization taking into account buildability constraints[J]. Structural and Multidisciplinary Optimization, 2014, 50(5):755-774.
    [2] Kanno Y. Global optimization of trusses with constraints on number of different cross-sections:A mixed-integer second-order cone programming approach[J]. Computational Optimization and Applications, 2016, 63(1):203-236.
    [3] 易桂莲, 隋允康. 基于应力约束全局化策略的板壳结构强度拓扑优化[J]. 工程力学, 2015, 32(8):211-216. Yi Guilian, Sui Yunkang. Topology optimization for plate and shell structures based on stress constraint globalization[J]. Engineering Mechanics, 2015, 32(8):211-216. (in Chinese)
    [4] Greiner D, Emperador J M, Galván B, et al. Comparing the fully stressed design and the minimum constrained weight solutions in truss structures[M]//Evolutionary Algorithms and Metaheuristics in Civil Engineering and Construction Management. Springer, Cham, 2015:17-32.
    [5] Zhou M, Sigmund O. On fully stressed design and p-norm measures in structural optimization[J]. Structural and Multidisciplinary Optimization, 2017, 56(3):731-736.
    [6] 徐龙河, 吴耀伟, 李忠献. 基于概率的钢框架结构地震失效模式识别方法[J]. 工程力学, 2016, 33(5):66-73. Xu Longhe, Wu Yaowei, Li Zhongxian. Probability based seismic failure modes identification method for steel frame structure[J]. Engineering Mechanics, 2016, 33(5):66-73. (in Chinese)
    [7] 白久林, 金双双, 欧进萍. 防屈曲支撑-钢筋混凝土框架结构基于能量平衡的抗震塑性设计[J]. 建筑结构学报, 2017, 38(1):125-134. Bai Jiulin, Jin Shuangshuang, Ou Jinping. Seismic plastic design of buckling-restrained braced-RC frame structures based on energy balance[J]. Journal of Building Structures, 2017, 38(1):125-134.
    [8] 徐龙河, 于绍静, 卢啸. 基于损伤控制函数与失效概率的结构抗震性能多目标优化与评估[J]. 工程力学, 2017, 34(10):61-67. Xu Longhe, Yu Shaojing, Lu Xiao. Damage control
    [9] function and failure probability based structural seismic performance multi-objective optimization and assessment[J]. Engineering Mechanics, 2017, 34(10):61-67. (in Chinese)
    [10] Prager W, Shield R T. A general theory of optimal plastic design[J]. Journal of Applied Mechanics, 1967, 34(1):184-186.
    [11] Rozvany G I N, Pomezanski V. Fundamentals of exact multi-load topology optimization stress based least volume trusses (generalized Michell structures)-Part I:Plastic design[J]. Structural & Multidisciplinary Optimization, 2014, 50(6):1051-1078
    [12] Buonopane S G, Schafer B W. Reliability of steel frames designed with advanced analysis[J]. Journal of Structural Engineering, 2006, 132(2):267-276.
    [13] Zhang H, Shayan S, Rasmussen K J R, et al. System-based design of planar steel frames, I:Reliability framework[J]. Journal of Constructional Steel Research. 2016, 123:135-143.
    [14] ANSI/AISC 360-10, Specification for structural steel buildings[S]. Chicago:American Institute of Steel Construction, 2010.
    [15] GB50017-2017, 钢结构设计规范[S]. 北京:中国计划出版社, 2017. GB50011-2017, Design code for steel structures[S]. Beijing:China Architectural Industry Press, 2017. (in Chinese)
    [16] Iu C K. Nonlinear analysis for the pre-and post-yield behavior of a composite structure with the refined plastic hinge approach[J]. Journal of Constructional Steel Research, 2016, 119:1-16.
    [17] Feng X, Guo S. Geometrical nonlinear elasto-plastic analysis of tensegrity systems via the co-rotational method[J]. Mechanics Research Communications, 2017, 79:32-42.
    [18] Rahman M K. Ultimate strength estimation of ships transverse frames by incremental elastic plastic finite element analysis[J]. Marine Structures, 1988, 11(7):291-317.
    [19] Wang H, Ohmori H. Elasto-plastic analysis-based truss optimization using genetic algorithm[J]. Engineering Structures, 2013, 50(3):1-12.
    [20] Yang L F, Li Q, Zhang W, et al. Homogeneous generalized yield criterion based elastic modulus reduction method for limit analysis of thin-walled structures with angle steel[J]. Thin-walled Structures, 2014, 80(9):153-158.
    [21] Yang L F, Yu B, Ju J W. Incorporated strength capacity technique for limit load evaluation of trusses and framed structures under constant loading[J]. Journal of Structural Engineering, 2015, 141(11):04015023-1-04015023-11
    [22] 杨绿峰, 李琦, 张伟. 工程结构整体承载力设计与优化的弹性模量缩减法研究[J]. 土木工程学报, 2015, 48(5):62-70. Yang Lufeng, Li Qi, Zhang Wei. Elastic modulus reduction method for design and optimization of global load bearing capacity of engineering structures[J]. China Civil Engineering Journal, 2015, 48(5):62-70. (in Chinese)
    [23] 杨绿峰, 欧伟, 张伟. 桥梁结构两层面承载力设计与优化的策略和方法[J]. 中国公路学报, 2016, 29(7):62-71. Yang Lufeng, Ou Wei, Zhang Wei. Investigation on strategy and method of two-level load carrying capacity design and optimization for bridge structures[J]. China Journal of Highway and Transport, 2015, 48(5):62-70. (in Chinese)
    [24] ASCE/SEI 7-10, Minimum Design Loads for Buildings and Other Structures[S]. America:American Society of Civil Engineers, 2010.
    [25] Zhang H, Shayan S, Rasmussen K J R, et al. System-based design of planar steel frames, II:Reliability results and design recommendations[J]. Journal of Constructional Steel Research, 2016, 123:154-161.
    [26] Albermani F G A, Kitipornchai S. Numerical simulation of structural behaviour of transmission towers[J]. Thin-Walled Structures, 2003, 41(2/3):167-177.
    [27] 柴昶, 刘迎春. 冷成型焊接圆钢管径厚比限值合理取值的讨论[J]. 建筑结构, 2015, 45(3):44-47. Cai Chang, Liu Yingchun. Discussion on reasonable value of cold-formed welded round steel pipe diameter ratio[J]. Building Structure, 2015, 45(3):44-47. (in Chinese)
    [28] Kirsch U. On singular topologies in optimum structural design[J]. Structural & Multidisciplinary Optimization. 1990, 2(3):133-142.
    [29] 钱令希. 工程结构优化设计[M]. 北京:科学出版社, 2011:12-13. Qian Lingxi. Engineering structure optimization design[M]. Beijing:Science Press, 2011:12-13. (in Chinese)
  • 期刊类型引用(6)

    1. 秦朝俊,刘静雅. 基于ANSYS的离心复合校准装置桁架结构分析. 计测技术. 2023(02): 98-104 . 百度学术
    2. 张心纯,陆泽磊,周历,任文辉,马彦阳. 钢桁架结构平推过程稳定性能研究. 西安科技大学学报. 2022(04): 716-723 . 百度学术
    3. 代颖,秦海斌. 桁架结构中杆件优化及力学性能仿真分析. 商丘师范学院学报. 2021(09): 56-58 . 百度学术
    4. 杨绿峰,殷玉琪,柏大炼. 基于平衡向量的刚架结构极限承载力分析的广义塑性铰法. 工程力学. 2021(12): 49-56 . 本站查看
    5. 王蕤. 承重装置的ALPHA模型设计. 科技创新导报. 2020(10): 89-90 . 百度学术
    6. 王墉成,李森,刘晓金,渠继州,付博伟. 一种便携式侧扫声呐舷侧支架的设计及实现. 海洋信息. 2020(03): 46-52 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  475
  • HTML全文浏览量:  41
  • PDF下载量:  78
  • 被引次数: 14
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-08-17
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回