幂强化弹塑性材料平面应变反问题

梅杰, 张博文, 张春云, 彭海峰, 崔苗

梅杰, 张博文, 张春云, 彭海峰, 崔苗. 幂强化弹塑性材料平面应变反问题[J]. 工程力学, 2020, 37(1): 248-256. DOI: 10.6052/j.issn.1000-4750.2019.01.0086
引用本文: 梅杰, 张博文, 张春云, 彭海峰, 崔苗. 幂强化弹塑性材料平面应变反问题[J]. 工程力学, 2020, 37(1): 248-256. DOI: 10.6052/j.issn.1000-4750.2019.01.0086
MEI Jie, ZHANG Bo-wen, ZHANG Chun-yun, PENG Hai-feng, CUI Miao. THE INVERSE PROBLEM OF PLANE STRAIN IN POWER-HARDENING ELASTICOPLASTICITY MATERIALS[J]. Engineering Mechanics, 2020, 37(1): 248-256. DOI: 10.6052/j.issn.1000-4750.2019.01.0086
Citation: MEI Jie, ZHANG Bo-wen, ZHANG Chun-yun, PENG Hai-feng, CUI Miao. THE INVERSE PROBLEM OF PLANE STRAIN IN POWER-HARDENING ELASTICOPLASTICITY MATERIALS[J]. Engineering Mechanics, 2020, 37(1): 248-256. DOI: 10.6052/j.issn.1000-4750.2019.01.0086

幂强化弹塑性材料平面应变反问题

基金项目: 国家自然科学基金资助项目(51576026);中国博士后基金项目(2016M601305);中央高校基本科研业务费项目(DUT17LK04)
详细信息
    作者简介:

    梅杰(1995-),男,江西人,硕士生,主要从事计算热/力学及其反问题的研究(E-mail:meijie2013@dlut.mail.edu.cn);张博文(1996-),男,河南人,硕士生,主要从事计算热/力学及其反问题的研究(E-mail:1193996167@qq.com);张春云(1995-),女,山东人,博士生,主要从事计算热/力学及其反问题的研究(E-mail:1969528001@qq.com);彭海峰(1986-),男,辽宁人,讲师,博士,硕导,主要从事计算热/力学的研究(E-mail:hfpeng@dlut.edu.cn).

    通讯作者:

    崔苗(1980-),女,辽宁人,教授,博士,博导,主要从事计算热/力学及其反问题的研究(E-mail:miaocui@dlut.edu.cn).

  • 中图分类号: O344.3

THE INVERSE PROBLEM OF PLANE STRAIN IN POWER-HARDENING ELASTICOPLASTICITY MATERIALS

  • 摘要: 幂强化弹塑性材料在工程领域诸如金属管材制备、岩土工程分析中都具有广泛的应用。幂强化弹塑性材料的本构参数(例如弹性模量)和结构的边界条件(例如位移)往往不容易确定。在这种情况下,反问题为确定这些参数提供了一种新思路。将ABAQUS二次开发的子程序和复变量求导法结合,用于求解基于幂强化弹塑性材料的平面应变力学反问题:以传统的用户单元子程序为框架,将程序中实数变量转换为复数,建立了复数用户单元;采用复变量求导法确定测点位移对反演参数的灵敏度矩阵;结合最小二乘法和高斯消去法对反问题进行迭代求解。给出应用算例讨论了复变量求导法对正问题计算精度影响、算法在反问题求解过程中的精度,以及反演初值、测量误差对反演结果的影响。
    Abstract: Power-hardening elastoplastic materials have a wide range of engineering applications, such as metal pipe manufacturing and geotechnical analysis. The constitutive parameters of power-hardening elastoplastic materials (such as Young's modulus) and the boundary conditions of a structure (such as displacements) are often difficult to be determined. Under this circumstance, the inverse problem provides a new approach for determining these parameters. In the present work, ABAQUS UEL (user element subroutines) and the CVDM (complex variable-differentiation method) are combined to solve the inverse problem of plane strain mechanics based on power-hardening elastoplastic materials. Firstly, the traditional user element subroutine is used as the framework to convert a real variable in the subroutine into a complex variable, and the complex user element is established. Then the complex variable-differentiation method is used to determine the sensitivity matrix of the displacements at measurement point with respect to the inverse parameters. Finally, the inverse problem is solved iteratively by the Least-squares method and Gaussian elimination method. Numerical examples are given to discuss the influence of the CVDM on the accuracy of the direct problem calculation, and the accuracy of the present algorithm. The influence of initial value and measurement errors on inversion results are also investigated.
  • [1] 樊森清, 王坤哲, 文良凡, 等. 膨胀管技术中膨胀力的理论计算[J]. 石油机械, 2012, 40(8):34-37. Fan Senqing, Wang Kunzhe, Wen Liangfan, et al. Theoretical calculation of the expansive force of the expandable tubular material[J]. China Petroleum Machinery, 2012, 40(8):34-37. (in Chinese)
    [2] 侯公羽, 李晶晶, 杨悦, 等. 基于幂强化本构模型的轴对称圆巷弹塑性解[J]. 岩土力学, 2014, 35(01):134-142. Hou Gongyu, Li Jingjing, Yang Yue, et al. Elastoplastic solution of axisymmetric circular tunnel based on power-hardening model[J]. Rock and Soil Mechanics, 2014, 35(01):134-142. (in Chinese)
    [3] 唐胜兰, 俞缙, 张建智, 等. 顾及沉积岩应变强化与扩容效应的围岩弹塑性力学状态理论分析[J]. 华侨大学学报(自然科学版), 2016, 37(06):691-697. Tang Shenglan, Yu Jin, Zhang Jianzhi, et al. Analytical research for elastoplastic mechanical response considering strain-hardening and dilatancy of sedimentary rock[J]. Journal of Huaqiao University (Natural Science), 2016, 37(06):691-697. (in Chinese)
    [4] 任志乾, 于宗乐, 陈循. 钢丝绳弹塑性损伤本构模型研究[J]. 机械工程学报, 2017, 53(1):121-129. Ren Zhiqian, Yu Zongyue, Chen Xun. Study on wire rope elastic-plastic damage constitutive model[J]. Journal of Mechanical Engineering, 2017, 53(1):121-129. (in Chinese)
    [5] 何永勇, 褚福磊, 郭丹, 等. 基于遗传算法的旋转机械转子裂纹识别的研究[J]. 机械工程学报, 2001,(10):69-74. He Yongyong, Chu Fulei, Guo Dan, et al. Study on genetic algorithms based rotor crack detection for rotating machin[J]. Journal of Mechanical Engineering, 2001(10):69-74. (in Chinese)
    [6] 郭红玲, 杨海天, 赵潇. 蚁群算法求解弹性本构参数区间反问题[J]. 工程力学, 2012, 29(1):7-12. Guo Hongling, Yang Haitian, Zhao Xiao. Solving an inverse problem of intervals of elastic constitutive parameters via ant colony algorithm[J]. Engineering Mechanics, 2012, 29(1):7-12. (in Chinese)
    [7] 姜绍飞, 任晖, 骆剑彬. 基于云计算的框架结构参数并行辨识算法[J]. 工程力学, 2018, 35(4):135-143. Jiang Shaofei, Ren Hui, Luo Jianbin. A parallel identification algorithm on physical parameters of frame structures based on cloud computing[J]. Engineering Mechanics, 2018, 35(4):135-143. (in Chinese)
    [8] Guo Lei, Meng Zhuo, Wang Libiao, et al. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm[J]. Energy Conversion & Management. 2016, 108(Jan.):520-528.
    [9] 杨海天, 杨博, 李哈汀. 带有弹性边界支撑梁的多宗量反问题数值求解[J]. 大连理工大学学报, 2011(4):469-472. Yang Haitian, Yang Bo, Li Hating. Numerical solution of multi-variables inverse problem for a beam with elastic boundary supports[J]. Journal of Dalian University of Technology, 2011, (4):469-472. (in Chinese)
    [10] Ran Chunjiang, Yang Haitian, Zhang Guoqing. A gradient based algorithm to solve inverse plane bimodular problems of identification[J]. Journal of Computational Physics, 2018, 355:78-94.
    [11] 郭力, 高效伟. 复变量求导法灵敏度分析及弹塑性参数反演[J]. 东南大学学报(自然科学版), 2008(1):141-145. Guo Li, Gao Xiaowei. Sensitivity analysis and elasto-plastic parameter inversing via complex-variable differentiation method[J]. Journal of Southeast University (Natural Science Edition), 2008(1):141-145. (in Chinese)
    [12] Astroza Rodrigo, Ebrahimian Hamed, Conte Joelp. Material parameter identification in distributed plasticity fe models of frame-type structures using nonlinear stochastic filtering[J]. Journal of Engineering Mechanics, 2015, 141(5):04014149.
    [13] 韩阳, 谭跃虎, 李二兵, 等. 岩石非定常Burgers蠕变模型及其参数识别[J]. 工程力学, 2018, 35(3):210-217.Han Yang, Tan Yuehu, Li Erbing, et al. Non-stationary burgers creep model of rock and its parameter identification[J]. Engineering Mechanics, 2018, 35(3):210-217. (in Chinese)
    [14] Cui Miao, Duan Weiwei, Gao Xiaowei. A new inverse analysis method based on a relaxation factor optimization technique for solving transient nonlinear inverse heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2015, 90:491-498.
    [15] Cui Miao, Zhao Yi, Xu Bingbing, et al. A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2017, 107:747-754.
    [16] 薛齐文, 张雪珊. 热力耦合反问题研究[J]. 机械工程学报, 2010, 46(18):157-161. Xue Qiwen, Zhang Xueshan. Research of inverse problem of thermo-mechanical coupling[J]. Journal of Mechanical Engineering, 2010, 46(18):157-161. (in Chinese)
    [17] 韩雯雯, 吴健, 刘长亮, 等. 基于导热反问题的二维圆管内壁面第三类边界条件的反演[J]. 机械工程学报, 2015, 51(16):171-176. Han Wenwen, Wu Jian, Liu Changliang, et al. Inversion of the third boundary condition on the inner wall of atwo-dimensional pipe based on inverse heat conduction problems[J]. Journal of Mechanical Engineering, 2015, 51(16):171-176. (in Chinese)
    [18] Cui Miao, Yang Kai, Xu Xiaoliang, et al. A modified Levenberg-Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2016, 97:908-916.
    [19] Fielder Randal, Montoya Arturo, Millwater Harry, et al. Residual stress sensitivity analysis using a complex variable finite element method[J]. International Journal of Mechanical Sciences, 2017, 133:112-120.
    [20] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003:62. Wang Xucheng. Finite Element Method[M]. Beijing:Tsinghua University press, 2003:62. (in Chinese)
    [21] Dunne, Fionn, Nik Petrinic. Introduction to computational plasticity[M]. New York:Oxford University press, 2005:17.
    [22] Lyness J N, Moler C B. Numerical differentiation of analytic functions[J]. Siam Journal on Numerical Analysis, 1967, 4(2):202-210.
    [23] Gao X W, Liu D D, Chen P C. Internal stresses in inelastic BEM using complex-variable differentiation[J]. Computational Mechanics, 2002, 28(1):40-46.
  • 期刊类型引用(3)

    1. 刘竹丽,胡俊涛,伍川,张博,邓力. 输电线路分裂导线翻转自恢复特性研究. 振动与冲击. 2023(21): 284-290 . 百度学术
    2. 黄欢,毛先胤,曾华荣,吴建蓉,牛唯,张义钊,王文淞. 基于弧垂测量的分裂导线偏心覆冰监测方法. 电力大数据. 2022(06): 69-77 . 百度学术
    3. 文嘉意,谢强. 弱耦联体系地震响应的隔离分析求解. 工程力学. 2021(04): 102-110+122 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  580
  • HTML全文浏览量:  57
  • PDF下载量:  63
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-06-16
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回