单调荷载下Q345钢焊缝金属的延性断裂性能研究

陈爱国, 王开明, 邢佶慧, 陈雨

陈爱国, 王开明, 邢佶慧, 陈雨. 单调荷载下Q345钢焊缝金属的延性断裂性能研究[J]. 工程力学, 2020, 37(1): 88-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0028
引用本文: 陈爱国, 王开明, 邢佶慧, 陈雨. 单调荷载下Q345钢焊缝金属的延性断裂性能研究[J]. 工程力学, 2020, 37(1): 88-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0028
CHEN Ai-guo, WANG Kai-ming, XING Ji-hui, CHEN Yu. DUCTILE FRACTURE BEHAVIOR OF WELD METAL FOR Q345 STEEL UNDER MONOTONIC LOADING[J]. Engineering Mechanics, 2020, 37(1): 88-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0028
Citation: CHEN Ai-guo, WANG Kai-ming, XING Ji-hui, CHEN Yu. DUCTILE FRACTURE BEHAVIOR OF WELD METAL FOR Q345 STEEL UNDER MONOTONIC LOADING[J]. Engineering Mechanics, 2020, 37(1): 88-97. DOI: 10.6052/j.issn.1000-4750.2019.01.0028

单调荷载下Q345钢焊缝金属的延性断裂性能研究

基金项目: 国家自然科学基金项目(51578044,51578045);国家留学基金项目(201707095056)
详细信息
    作者简介:

    王开明(1991-),男,山东人,工程师,硕士,主要从事钢结构断裂方面的研究(E-mail:bestlynnmail@163.com);邢佶慧(1975-),女,黑龙江人,教授,博士,主要从事钢结构抗震方面的研究(E-mail:jhxing@bjtu.edu.cn);陈雨(1995-),男,江苏人,硕士生,主要从事钢结构抗震方面的研究(E-mail:17121018@bjtu.edu.cn).

    通讯作者:

    陈爱国(1974-),男,江苏人,副教授,博士,主要从事钢结构抗震方面的研究(E-mail:agchen@bjtu.edu.cn).

  • 中图分类号: TU391

DUCTILE FRACTURE BEHAVIOR OF WELD METAL FOR Q345 STEEL UNDER MONOTONIC LOADING

  • 摘要: 为了研究Q345钢焊缝金属的延性断裂性能,对9个试件进行了单调荷载下试验研究,试件设计考虑了不同应力三轴度和洛德角分布范围。分别采用Swift、Voce及Swift-Voce混合强化模型,拟合得到了能预测到断裂时的完整应力-应变曲线,其中Swift-Voce混合强化模型模拟各试件荷载-位移曲线精度最好。采用VGM,改进SWDM和Lou模型3种断裂模型,通过编写UVARM子程序,校准了各模型的材料参数,并对各试件进行了有限元断裂模拟预测,比较分析了各个模型的预测精度。结果表明,VGM模型对接近于平面应变状态的矩形缺口和槽板试件的预测结果误差较大,而改进SWDM和Lou模型通过引入洛德角参数来描述偏应力状态,对不同应力状态的试件断裂预测结果精度更高,模型的适用性更好。
    Abstract: To study the ductile fracture behavior of weld metal for Q345 steel, nine specimens with different distribution of stress triaxiality and Lode angle were tested under monotonic loading. Swift, Voce and mixed swift-voce hardening models were used to fit the full stress-strain curves up to fracture. in comparison, the mixed Swift-Voce hardening model showed the best accuracy in simulating the load-displacement curves of the specimens. In addition, three kinds of fracture prediction models, namely, VGM, modified SWDM and Lou models, were utilized. The material parameters were calibrated by the UVARM subroutine and applied to the finite element numerical simulations. The accuracy of these prediction models were compared and analyzed. The results showed that the VGM model presented a relatively large error in predicting the fracture of rectangular notches and grooved plate specimens when they were near the plane strain state. However, the modified SWDM and Lou models produced accurate predictions when the Lode angle were considered to describe the deviatoric stress state. Based on the fracture prediction results, the modified SWDM and Lou models were effective for specimens of various stress states.
  • [1] Kuwamura H, Yamamoto K. Ductile crack as trigger of brittle fracture in steel[J]. Journal of Structural Engineering, 1997, 123(6):729-735.
    [2] Chi W M, Kanvinde A M, Deierlein G G. Prediction of ductile fracture in steel connections using SMCS criterion[J]. Journal of Structural Engineering, 2006, 132(2):171-181.
    [3] Kanvinde A M, Fell B V, Gomez I R, et al. Predicting fracture in structural fillet welds using traditional and micromechanical fracture models[J]. Engineering Structures, 2008, 30(11):3325-3335.
    [4] Zhou H, Wang Y Q, Shi Y Y, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48:90-100.
    [5] 王磊, 班慧勇, 石永久, 等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11):68-78. Wang Lei, Ban Huiyong, Shi Yongjiu, et al. Finite element analysis of aseismic behavior of high-strength steel beam-to-column connections in steel frames based on micromechanics of fracture[J]. Engineering Mechanics, 2018, 35(11):68-78. (in Chinese)
    [6] 刘希月, 王元清, 石永久, 等. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5):54-64. Liu Xiyue, Wang Yuanqing, Shi Yongjiu, et al. Experimental study on the weld fracture behavior of high strength steel beam-to-column connections[J]. Engineering Mechanics, 2018, 35(5):54-64. (in Chinese)
    [7] Liao F F, Wang W, Chen Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):1-22.
    [8] 王伟, 廖芳芳, 陈以一. 基于微观机制的钢结构节点延性断裂预测与裂后路径分析[J]. 工程力学, 2014, 31(3):101-108. Wang Wei, Liao Fangfang, Chen Yiyi. Ductile fracture predition and post-fracture path tracing of steel connections based on micromechanics-based fracture criteria[J]. Engineering Mechanics, 2014, 31(3):101-108. (in Chinese)
    [9] 张沛. 基于GTN损伤模型的钢节点断裂预测研究[D]. 北京:北京交通大学, 2014:37-54. Zhang Pei. Study on fracture prediction of steel joints using micromechanical GTN model[D]. Beijing:Bejing Jiaotong University, 2014:37-54. (in Chinese)
    [10] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46:81-98.
    [11] Barsoum I, Faleskog J. Rupture mechanisms in combined tension and shear-Experiments[J]. International Journal of Solids and Structures, 2007, 44:5481-5498.
    [12] Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading[J]. International Journal of Solids and Structures, 2007, 44:5163-5181.
    [13] Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161:1-20.
    [14] Bai Y L, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24:1071-1096.
    [15] Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals[J]. International Journal of Solids and Structures, 2012, 49:3605-3615.
    [16] Lou Y S, Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion:Experiments and simulation[J]. Journal of Materials Processing Technology, 2013, 213:1284-1302.
    [17] Smith C M, Deierlein G G, Kanvinde A M. A stress-weighted damage model for ductile fracture initiation in structural steel under cyclic loading and generalized stress states[R]. CA:Stanford University, 2014:161-244.
    [18] Wen H J, Mahmoud H. New model for ductile fracture of metal alloys. Ⅰ:Monotonic loading[J]. Journal of Engineering Mechanics, 2016, 142(2):04015088.
    [19] Ma X X, Wang W, Chen Y Y, et al. Simulation of ductile fracture in welded tubular connections using a simplified damage plasticity model considering the effect of stress triaxiality and Lode angle[J]. Journal of Constructional Steel Research, 2015, 114:217-236.
    [20] Liu Y, Kang L, Ge H B. Experimental and numerical study on ductile fracture of structural steels under different stress states[J]. Journal of Constructional Steel Research, 2019, 158:381-404.
    [21] 王俊杰, 王伟. 考虑罗德角参数的钢材薄板延性断裂标定方法[J]. 工程力学, 2019, 36(5):37-43. Wang Junjie, Wang Wei. Ductile fracture locus validation method of thin steel plates considering the Lode angle parameter[J]. Engineering Mechanics, 2019, 36(5):37-43. (in Chinese)
    [22] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17:201-217.
  • 期刊类型引用(14)

    1. 魏陆原,杨飞,延睿,段留省. 结构钢材全过程真实应力-应变关系研究. 工程力学. 2025(04): 216-225+272 . 本站查看
    2. 何响,阳勇,黄政华. XK型相贯节点极限承载力研究及空间效应对极限承载力的影响. 湖南文理学院学报(自然科学版). 2024(02): 78-88 . 百度学术
    3. 陈爱国,张佩雲,蔺军,邢佶慧. 基于MMC模型的Q460C高强结构钢延性断裂性能研究. 工程力学. 2024(09): 179-190 . 本站查看
    4. 刘岩,陈奕贤,王鑫,樊晨阳,武艳如. 轴力作用下焊接方管Π型节点的极限承载力分析. 华南理工大学学报(自然科学版). 2024(11): 32-42 . 百度学术
    5. 张明杰,齐立春,黄利军,李雪飞,吴泽浩. TC2钛合金薄壁型材下陷成形工艺参数分析及优化. 宇航材料工艺. 2023(01): 43-49 . 百度学术
    6. 王江超,卓子超. 基于GTN损伤模型的Q690钢及其对接接头断裂性能评估. 中国舰船研究. 2022(02): 142-147 . 百度学术
    7. 韩涵,郑涛,王旭东,黄政华. X形圆钢管相贯节点焊缝断裂预测及承载力分析. 建筑结构. 2022(13): 99-105 . 百度学术
    8. 周德,王灿,雒明波,王宁波,周天睿,黄方林. 混凝土桥梁荷载试验短期黏弹性力学行为研究. 中南大学学报(自然科学版). 2022(06): 2155-2166 . 百度学术
    9. 罗青青,李军,刘正磊. 基于微观断裂模型Q235B钢材不同金属本构关系断裂预测研究. 中国水运(下半月). 2022(12): 39-41 . 百度学术
    10. 罗青青,李军,刘正磊. 基于微观断裂模型Q235B钢材不同金属本构关系断裂预测研究. 中国水运. 2022(24): 39-41 . 百度学术
    11. 刘彦杰,高小青,李明强. 复杂应力状态下7085铝合金失效破坏试验与数值研究. 强度与环境. 2021(01): 40-46 . 百度学术
    12. 叶继红,范志鹏. 基于微观机制的复杂应力状态下钢材韧性断裂行为研究. 工程力学. 2021(05): 38-49 . 本站查看
    13. 尹越,张松,韩庆华,马涛. 基于循环孔洞扩张模型的Q355钢超低周疲劳断裂数值模拟. 工程力学. 2021(08): 246-256 . 本站查看
    14. 卓子超,张庆亚,王江超. 船板钢焊接接头的断裂失效行为及GTN模型的数值分析. 工程力学. 2020(11): 238-247 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  776
  • HTML全文浏览量:  120
  • PDF下载量:  155
  • 被引次数: 25
出版历程
  • 收稿日期:  2019-01-23
  • 修回日期:  2019-06-09
  • 刊出日期:  2020-01-24

目录

    /

    返回文章
    返回