随从力作用轴向运动叠层板的亚谐波共振

张晓宇, 胡宇达

张晓宇, 胡宇达. 随从力作用轴向运动叠层板的亚谐波共振[J]. 工程力学, 2019, 36(12): 15-23. DOI: 10.6052/j.issn.1000-4750.2019.01.0021
引用本文: 张晓宇, 胡宇达. 随从力作用轴向运动叠层板的亚谐波共振[J]. 工程力学, 2019, 36(12): 15-23. DOI: 10.6052/j.issn.1000-4750.2019.01.0021
ZHANG Xiao-yu, HU Yu-da. SUBHARMONIC RESONANCE OF AXIALLY MOVING LAMINATEED PLATES SUBJECTED TO FOLLOWER FORCES[J]. Engineering Mechanics, 2019, 36(12): 15-23. DOI: 10.6052/j.issn.1000-4750.2019.01.0021
Citation: ZHANG Xiao-yu, HU Yu-da. SUBHARMONIC RESONANCE OF AXIALLY MOVING LAMINATEED PLATES SUBJECTED TO FOLLOWER FORCES[J]. Engineering Mechanics, 2019, 36(12): 15-23. DOI: 10.6052/j.issn.1000-4750.2019.01.0021

随从力作用轴向运动叠层板的亚谐波共振

基金项目: 国家自然科学基金项目(11472239)
详细信息
    作者简介:

    张晓宇(1994-),女,内蒙古人,硕士生,主要从事非线性动力学研究(E-mail:zhangxiaoyu_0501@163.com).

    通讯作者:

    胡宇达(1968-),男,黑龙江人,教授,博士,博导,主要从事非线性动力学、电磁弹性力学研究(E-mail:huyuda03@163.com).

  • 中图分类号: O322;O343.8

SUBHARMONIC RESONANCE OF AXIALLY MOVING LAMINATEED PLATES SUBJECTED TO FOLLOWER FORCES

  • 摘要: 研究随从力作用轴向运动正交各向异性叠层板的亚谐波共振问题。基于给出的叠层板动能、势能、中面应变势能、轴向拉力引起的应变势能以及外力虚功,通过哈密顿原理导出叠层板的非线性振动方程。将非线性振动方程运用伽辽金积分法离散并进行无量纲化,推得关于时间变量的非线性振动微分方程组。应用多尺度法求解非线性方程组,分别得到前三阶模态稳态运动下1/3亚谐波共振幅频响应方程。最后通过算例分析,得到了振幅-调谐值特性变化曲线图、振幅-速度特性变化曲线图、振幅-激励幅值特性变化曲线图和激发共振双值解临界点曲线图。结果表明,共振幅值均是双值解,不同阶共振振幅有明显区别。
    Abstract: The subharmonic resonance of the axially moving orthotropic laminated plates under follower force was investigated. Based on the kinetic energy, potential energy, mid-plane strain potential energy, the strain potential energy caused by the axial tensile force and the external virtual work, the nonlinear vibration equations of the laminated plate were derived by using the Hamiltonian principle. The dimensionless nonlinear vibration differential equations with regards to time were achieved by using the Galerkin method. The multi-scale method was used to solve differential equations of the 1/3 subharmonic resonance, and the amplitude-frequency response equations of steady-state motion for different modes were obtained. Finally, through the analysis of the examples, the characteristic curves of amplitude varying with different parameters, e.g., the tuning parameter, the velocity, the excitation amplitude, and the critical point curves for exciting double-value resonance were plotted, respectively. The results showed that the resonance amplitudes were double-valued. Moreover, the amplitudes in different modal resonance cases were obviously different.
  • [1] Crabtree O I, Mesarovic S D, Richards R F, et al. Nonlinear vibrations of a pre-sressed laminated thin plate[J]. International Journal of Mechanical Sciences, 2006, 48(4):451-459.
    [2] 陈万吉, 任鹤飞. 基于新修正偶应力理论的Mindlin层合板自由振动分析[J]. 工程力学, 2016, 33(12):31-37, 43. Chen Wanji, Ren Hefei. Free vibration analysis of Mindlin laminates based on new modified couple stress theory[J]. Engineering Mechanics, 2016, 33(12):31-37, 43. (in Chinese)
    [3] Xue J H, Jin F S, Zhang J W, et al. Post-buckling induced delamination propagation of composite laminates with bi-nonlinear properties and anti-penetrating interaction effects[J]. Composites Part B, 2019, 166(1):148-161.
    [4] Xue J H, Xia F, Ye J, et al. Multiscale studies on the nonlinear vibration of delaminated composite laminates-global vibration mode with micro buckles on the interfaces[J]. Scientific Reports, 2017, 7(1):44-68.
    [5] Armagan K, Metin A. Buckling of laminated composite and sandwich beams due to axially varying in-plane loads[J]. Composite Structures, 2019, 210:391-408.
    [6] Krzysztof M. Vibration analysis of an axially moving sandwich beam with multiscale composite facings in thermal environment[J]. International Journal of Mechanical Sciences, 2018, 146/147:116-124.
    [7] 杨永宝, 危银涛. 弹性基础上正交各向异性圆柱壳的自由振动[J]. 工程力学, 2018, 35(4):24-32. Yang Yongbao, Wei Yintao. Free vibration of orthotropic cylindrical shells on elastic foundation[J]. Engineering Mechanics, 2018, 35(4):24-32. (in Chinese)
    [8] Marynowski K. Free vibration analysis of the axially moving Levy-type viscoelastic plate[J]. European Journal of Mechanics-A/Solids, 2010, 29(5):879-886.
    [9] Chen S H, Huang J L, Sze K Y. Multidimensional Lindstedt-Poincaré method for nonlinear vibration of axially moving beams[J]. Journal of Sound & Vibration, 2007, 306(1):1-11.
    [10] 胡宇达, 孙建涛, 张金志. 横向磁场中轴向变速运动矩形板的参数振动[J]. 工程力学, 2013, 30(9):299-304. Hu Yuda, Sun Jiantao, Zhang Jinzhi. Parametric vibration of an axially variable motion rectangular plate in transverse magnetic field[J]. Engineering Mechanics, 2013, 30(9):299-304. (in Chinese)
    [11] 胡宇达, 张明冉. 两平行导线间轴向运动载流梁的非线性主共振[J]. 工程力学, 2018, 35(10):238-248. Hu Yuda, Zhang Mingran. Nonlinear magnetic resonance of axial moving bearing beam between two parallel lines[J]. Engineering Mechanics, 2018, 35(10):238-248. (in Chinese)
    [12] Hu Y D, Hu P, Zhang J Z. Strongly nonlinear subharmonic resonance and chaotic motion of axially moving thin plate in magnetic field[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(2):021010.
    [13] Ding H, Chen L Q. Nonlinear dynamics of axially accelerating viscoelastic beams based on differential quadrature[J]. Acta Mechanica Solida Sinica, 2009, 22(3):267-275.
    [14] Ding H, Chen L Q. Galerkin methods for natural frequencies of high-speed axially moving beams[J]. Journal of Sound & Vibration, 2010, 329(17):3484-3494.
    [15] 叶康生, 殷振炜. 平面曲梁面内自由振动有限元分析的p型超收敛算法[J]. 工程力学, 2019, 36(5):28-36, 52. Ye Kangsheng, Yin Zhenwei. P-type superconvergence aigorithm for finite element analysis of free vibration in plane curved beam[J]. Engineering Mechanics, 2019, 36(5):28-36, 52. (in Chinese)
    [16] Banichuk N, Anichuk J, Jeronen P, et al. On the instability of an axially moving elastic plate[J]. International Journal of Solids and Structures, 2009, 47(1):91-99.
    [17] Saurabh K, Anirban M, Haraprasad R. Forced vibration response of axially functionally graded non-uniform plates considering geometric nonlinearity[J]. International Journal of Mechanical Sciences, 2017, 128-129, 194-205.
    [18] Zhang X F, Ye Z, Zhou Y J J. A Jacobi polynomial based approximation for free vibration analysis of axially functionally graded material beams[J]. Composite Structures, 2019, 225:111070.
    [19] 赵凤群, 王忠民. 随从力作用下功能梯度矩形板的非线性振动[J]. 振动与冲击, 2011, 30(3):53-59. Zhao Fengqun, Wang Zhongmin. Nonlinear vibration of functionally graded rectangular plates subjected to subsequent forces[J]. Journal of Vibration and Shock, 2011, 30(3):53-59. (in Chinese)
    [20] 王砚, 王忠民. 线性变厚度粘弹性矩形板在随从力作用下的动力稳定性[J]. 固体力学学报, 2008, 29(1):41-51. Wang Yan, Wang Zhongmin. Dynamic stability of linear variable weight flexural structures under rarticle load[J]. Chinese Journal of Solid Mechanics, 2008, 29(1):41-51. (in Chinese)
    [21] 戎艳天, 胡宇达. 移动载荷作用下轴向运动载流梁的参强联合共振[J]. 应用数学和力学, 2018, 39(3):266-277. Rong Yantian, Hu Yuda. Combined parametric and forced resonance of axially moving and current-carrying beams under moving loads[J]. Applied Mathenatics and Mechanics, 2018, 39(3):266-277. (in Chinese)
    [22] Mehdi A, Mehdi S, Sattar M E. Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load[J]. Nonlinear Engineering, 2019, 8(1):250-260.
  • 期刊类型引用(1)

    1. 丁维高,魏巍,郭悦,谢进. 受多点横向非定常约束梁的稳态与瞬态响应. 机械工程学报. 2021(21): 106-118 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  318
  • HTML全文浏览量:  23
  • PDF下载量:  82
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-08-13
  • 刊出日期:  2019-12-24

目录

    /

    返回文章
    返回