基于非接触激振-测振一体化技术的纤维增强复合材料参数辨识研究

李晖, 吴腾飞, 李则霖, 孙伟, 闻邦椿

李晖, 吴腾飞, 李则霖, 孙伟, 闻邦椿. 基于非接触激振-测振一体化技术的纤维增强复合材料参数辨识研究[J]. 工程力学, 2019, 36(12): 227-234. DOI: 10.6052/j.issn.1000-4750.2019.01.0010
引用本文: 李晖, 吴腾飞, 李则霖, 孙伟, 闻邦椿. 基于非接触激振-测振一体化技术的纤维增强复合材料参数辨识研究[J]. 工程力学, 2019, 36(12): 227-234. DOI: 10.6052/j.issn.1000-4750.2019.01.0010
LI Hui, WU Teng-fei, LI Ze-lin, SUN Wei, WEN Bang-chun. PARAMETER IDENTIFICATION OF FIBER-REINFORCED COMPOSITE MATERIAL BASED ON THE NON-CONTACT VIBRATION EXCITATION-MEASURING INTEGRATED TECHNOLOGY[J]. Engineering Mechanics, 2019, 36(12): 227-234. DOI: 10.6052/j.issn.1000-4750.2019.01.0010
Citation: LI Hui, WU Teng-fei, LI Ze-lin, SUN Wei, WEN Bang-chun. PARAMETER IDENTIFICATION OF FIBER-REINFORCED COMPOSITE MATERIAL BASED ON THE NON-CONTACT VIBRATION EXCITATION-MEASURING INTEGRATED TECHNOLOGY[J]. Engineering Mechanics, 2019, 36(12): 227-234. DOI: 10.6052/j.issn.1000-4750.2019.01.0010

基于非接触激振-测振一体化技术的纤维增强复合材料参数辨识研究

基金项目: 国家自然科学基金项目(51505070,51535082,U1708257);中央高校基本科研业务费专项资金项目(N160313002,N160312001,N170302001,N180313006);国家留学基金委项目(201806085032);东北大学航空动力装备振动及控制教育部重点实验室研究基金项目(VCAME201603).
详细信息
    作者简介:

    吴腾飞(1993-),男,河南人,硕士生,主要从事复合材料参数辨识研究(E-mail:1096343539@qq.com);李则霖(1994-),男,山东人,硕士生,主要从事低速冲击下的纤维金属混杂粘弹性复合板的动态响应研究(E-mail:lzl2129@163.com)孙伟(1975-),男,辽宁人,教授,博士,主要从事机械动力学分析及振动工程控制研究(E-mail:weisun@mail.neu.edu.cn)闻邦椿(1930-),男,浙江人,中国科学院院士,博士,主要从事振动利用工程研究(E-mail:avonlea@163.com)

    通讯作者:

    李晖(1982-),男,内蒙古人,副教授,博士,主要从事复合结构减震降噪研究(E-mail:lh200300206@163.com).

  • 中图分类号: TB535

PARAMETER IDENTIFICATION OF FIBER-REINFORCED COMPOSITE MATERIAL BASED ON THE NON-CONTACT VIBRATION EXCITATION-MEASURING INTEGRATED TECHNOLOGY

  • 摘要: 该文综合利用了平面声波激励和激光高精度测振的优势,提出了基于非接触激振-测振一体化技术的纤维增强复合材料参数辨识方法。以该类型复合材料薄板为例,建立了其在平面声波激励下的理论模型,并结合经典层合板理论、复模量法、应变能等方法,通过公式推导,实现了时域振动响应的理论求解。在理论结合实测数据的基础上,通过粒子群迭代求解方式,成功辨识获得了CF140碳纤维/环氧树脂材料的各项材料参数。通过与厂家提供的材料参数进行对比,发现该方法不仅在弹性模量、泊松比获取上具有较高的辨识精度,而且还可辨识出的材料在纤维纵向、横向和剪切方向的损耗因子。
    Abstract: A parameter identification method of fiber-reinforced composite material was proposed based on the non-contact vibration excitation-measuring integrated technology. The advantages of planar acoustic wave excitation and high-precision laser vibration measurement were comprehensively utilized. Firstly, by taking a composite thin plate of this kind as an example, a theoretical model under planar acoustic wave excitation was established. A theoretical solution to the time-domain vibration response was also obtained through the formula derivation, which was combined with the classical laminate theory, complex modulus method, strain energy method, etc. Subsequently, based on theoretical and measured data, the material parameters of CF140 carbon fiber/epoxy resin were successfully identified by the particle swarm iterative-solving method. By comparing with the material parameters provided by the manufacturer, it was found that this method not only had a high identification accuracy when acquiring the elastic moduli and Poisson's ratios, but also could identify the loss factors in the longitudinal, transverse and shear directions of fiber-reinforced composite material.
  • [1] Shokrieh M M, Lessard L B. Progressive fatigue damage modeling of composite materials, Part II:material characterization and model verification[J]. Journal of Composite Materials, 2000, 34(13):1081-1116.
    [2] Navarro M, Ginebra M P, Planell J A, et al. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass[J]. Acta Biomaterialia, 2005, 1(4):411-419.
    [3] 吴振, 刘子茗. 湿热力载荷下复合材料层合板力学行为[J]. 工程力学, 2016, 33(11):11-19. Wu Zhen, Liu Ziming. Mechanical behaviors of laminated composite plate subjected to hygro-thermo-mechanical loading[J]. Engineering Mechanics, 2016, 33(11):11-19. (in Chinese)
    [4] Li H, Xue P, Guan Z, et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property[J]. Nonlinear Dynamics, 2018, 94(3):2219-2241
    [5] O'Dwyer D, O'Dowd N, Mccarthy C. Numerical micromechanical investigation of interfacial strength parameters in a carbon fibre composite material[J]. Journal of Composite Materials, 2013, 48(6):749-760.
    [6] Michaud D J, Beris A N, Dhurjati P S. Thick-Sectioned RTM composite manufacturing:Part I-in situ cure model parameter identification and sensing[J]. Journal of Composite Materials, 2002, 36(10):1175-1200.
    [7] Schultz A B, Tsai S W. Dynamic moduli and damping ratios in fiber-reinforced composites[J]. Journal of Composite Materials, 1968, 2(3):368-379.
    [8] Araújo A L, Soares C M M, Freitas M J M D. Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data[J]. Composites Part B Engineering, 1996, 27(2):185-191.
    [9] Visscher J D, Sol H, Wilde W P D, et al. Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method[J]. Applied Composite Materials, 1997, 4(1):13-33.
    [10] Bledzki A K, Kessler A, Rikards R, et al. Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates[J]. Composites Science & Technology, 1999, 59(13):2015-2024.
    [11] Hwang. Identification of effective elastic constants of composite plates based on a hybrid genetic algorithm[J]. Composite Structures, 2009, 90(2):217-224.
    [12] Matter M, Gmür T, Cugnoni J, et al. Numericalexperimental identification of the elastic and damping properties in composite plates[J]. Composite Structures, 2009, 90(2):180-187.
    [13] 李双蓓, 周小军, 黄立新, 等. 基于有限元法的正交各向异性复合材料结构材料参数识别[J]. 复合材料学报, 2009, 26(4):197-202. Li Shuangbei, Zhou Xiaojun, Huang Lixin, et al. Material parameter identification for orthotropic composite by the finite element method[J]. Acta Materiae Composite Sinica, 2009, 26(4):197-202. (in Chinese)
    [14] Ng Y C. Deriving composite lamina properties from laminate properties using classical lamination theory and failure criteria[J]. Journal of Composite Materials, 2005, 39(39):1295-1306.
    [15] 李晖, 梁晓龙, 常永乐, 等. 纤维增强复合薄板非线性内共振表征测试方法研究[J]. 工程力学, 2018, 35(11):197-205, 222. Li Hui, Liang Xiaolong, Chang Yongle, et al. Study on characterization test method of nonlinear internal resonance of fiber-reinforced composite thin plate[J]. Engineering Mechanics, 2018, 35(11):197-205, 222. (in Chinese)
    [16] 薛鹏程, 李晖, 常永乐, 等. 悬臂边界下纤维增强复合材料薄板固有频率计算及验证[J]. 航空动力学报, 2016, 31(7):1754-1760. Xue Pengcheng, Li Hui, Chang Yongle, et al. Natural frequency calculation and validation of fiber reinforced composite thin plate under cantilever boundary[J]. Journal of Aerospace Power, 2016, 31(7):1754-1760. (in Chinese)
    [17] Jiang S, Wang Y, Ji Z. A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm[J]. Nonlinear Dynamics, 2015, 79(4):2553-2576.
  • 期刊类型引用(2)

    1. 吕钧澔,校金友,文立华,杨永超,刘海晴. 基于视觉分区的结构振动模态测试方法. 工程力学. 2022(03): 249-256 . 本站查看
    2. 陈秋云. 探讨纤维增强树脂基复合材料制造技术的研究进展. 科技风. 2021(19): 183-184 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  404
  • HTML全文浏览量:  32
  • PDF下载量:  63
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-26
  • 刊出日期:  2019-12-24

目录

    /

    返回文章
    返回