一种修正的切比雪夫积分公式

A MODIFIED CHEBYSHEV QUADRATURE

  • 摘要: 数值积分是一种重要的数值计算工具。基于切比雪夫等权系数积分公式,引入区间端部积分点,提出了一种修正的切比雪夫数值积分公式,突破了因实数节点切比雪夫等权系数积分公式阶数不超过9而在实际应用中受到的限制,也因增加了端点使其能够运用于弱形式求积元分析。经过在积分计算和梁杆的线性与非线性问题弱形式求积元分析中的应用,并与求解问题的精确解及采用洛巴托积分的结果进行对比,证明了所提出的修正的切比雪夫积分公式的准确性和有效性。

     

    Abstract: Numerical integration is of great importance in a numerical analysis. With the reference to Chebyshev's equal weight quadrature, a modified Chebyshev quadrature is proposed after incorporating the end points of an interval. The practical application of Chebyshev's equal weight quadrature is restrictive since the order of quadrature with mere real abscissas cannot exceed nine. The modified Chebyshev quadrature alleviates the restriction considerably and renders it applicable in a weak-form quadrature element analysis. It is applied to the evaluation of integrals and linear and non-linear weak form quadrature element analysis of rods and beams. Results are compared with analytical solutions and those obtained using Lobatto quadrature, verifying the accuracy and the effectiveness of the proposed quadrature.

     

/

返回文章
返回