[1] |
Tremblay R, Robert N. Seismic performance of low-and medium-rise chevron braced steel frame[J]. Canadian Journal of Civil Engineering, 2011, 27(6):1192-1206.
|
[2] |
Christopoulos C, Pampanin S, Nigel Priestley M J. Performance-based seismic response of frame structures including residual deformations. Part I:Single-degree of freedom systems[J]. Journal of Earthquake Engineering, 2003, 7(1):97-118.
|
[3] |
Zhu S, Zhang Y. Seismic behavior of self-centering braced frame buildings with reusable hysteretic damping brace[J]. Earthquake engineering & structural dynamics, 2007, 36(10):1329-1346.
|
[4] |
Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
|
[5] |
Chou C C, Wang Y C, Chen J H. Seismic design and behavior of post-tensioned steel connections including effects of a composite slab[J]. Engineering Structures, 2008, 30(11):3014-3023.
|
[6] |
Chou C C, Chen J H. Seismic design and shake table tests of a steel post-tensioned self-centering moment frame with a slab accommodating frame expansion[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(11):1241-1261.
|
[7] |
Miller D J. Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy[D]. Urbana, Illinois:University of Illinois at Urbana-Champaign, 2011:76-129.
|
[8] |
Miller D J, Fahnestock L A, Eatherton M R. Self-centering buckling-restrained braces for advanced seismic performance[C]//Proceedings of the 2011 Structures Congress. Las Vegas, USA:Structural Engineering Institute of ASCE, 2011:960-970.
|
[9] |
Miller D J, Fahnestock L A, Eatherton M R. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures, 2012, 40:288-298.
|
[10] |
刘璐. 自复位防屈曲支撑结构抗震性能及设计方法[D]. 哈尔滨:哈尔滨工业大学, 2013. Liu Lu. Seismic behavior and design of structure with self-centering buckling-restrained braces[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
|
[11] |
刘璐, 吴斌, 李伟, 等. 自复位防屈曲支撑结构动力位移反应的关键参数[J]. 工程力学, 2016, 33(1):188-194. Liu Lu, Wu Bin, Li Wei, et al. Key parameters of structure with self-centering buckling-restrained braces for seismic analysis[J]. Engineering Mechanics, 2016, 33(1):188-194. (in Chinese)
|
[12] |
刘璐, 吴斌, 李伟, 等. 等效线性化方法在自复位防屈曲支撑结构中的应用[J]. 工程力学, 2016, 33(3):204-213. Liu Lu, Wu Bin, Li Wei, et al. The application of the equivalent linearization methodology in self-centering buckling-restrained braced frames[J]. Engineering Mechanics, 2016, 33(3):204-213. (in Chinese)
|
[13] |
徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究[J]. 建筑结构学报, 2016, 37(9):142-148. Xu Longhe, Fan Xiaowei, Dai Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(9):142-148. (in Chinese)
|
[14] |
徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-122. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation brace[J]. Engineering Mechanics, 2016, 33(10):116-122. (in Chinese)
|
[15] |
Xu Longhe, Fan Xiaowei, Li Zhongxian. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs[J]. Journal of Constructional Steel Research, 2017, 139:363-373.
|
[16] |
高丛峰. 温度和应变率对拉伸载荷下记忆合金本构关系的影响[J]. 天津大学学报, 2001, 34(3):372-375. Gao Congfeng. Study on effect of temperature and strain rate on constitutive relation of shape memory alloy under tension[J]. Journal of Tianjin University, 2001, 34(3):372-375. (in Chinese).
|
[17] |
Ismail M, Ikhouane F, José Rodellar. The hysteresis Bouc-Wen model, a survey[J]. Archives of Computational Methods in Engineering, 2009, 16(2):161-188.
|
[18] |
Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of Engineering Mechanics, 1976, 102(2):249-263.
|
[19] |
Rodellar F I J. Systems with hysteresis-analysis, identification and control using the Bouc-Wen model[M]. West Sussex, England:John Wiley & Sons Ltd, 2007:14-18.
|
[20] |
Triantafyllou S, Koumousis V. An inelastic Timoshenko beam element with axial-shear-flexural interaction[J]. Computational Mechanics, 2011, 48(6):713-727.
|
[21] |
Xu Longhe, Fan Xiaowei, Li Zhongxian. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
|
[22] |
Ma F, Zhang H, Bockstedte A, et al. Parameters analysis of the differential model of hysteresis[J]. Journal of Applied Mechanics, 2004, 71(3):342-349.
|
[23] |
余波, 洪汉平, 杨绿峰. 非弹性体系地震动力响应分析的新型单轴Bouc-Wen模型[J]. 工程力学, 2012, 29(12):265-294. Yu Bo, Hong Hanping, Yang Lüfeng. Improved uniaxial Bouc-Wen model for seismic dynamic response analysis of inelastic system[J]. Engineering Mechanics, 2012, 29(12):265-294. (in Chinese)
|
[24] |
Goda K, Hong H P, Lee C S. Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior[J]. Journal of Earthquake Engineering, 2009, 13(5):600-622.
|