装配式自复位耗能支撑恢复力模型与试验验证

徐龙河, 孙雨生, 要世乾, 李忠献

徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146. DOI: 10.6052/j.issn.1000-4750.2018.04.0249
引用本文: 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146. DOI: 10.6052/j.issn.1000-4750.2018.04.0249
XU Long-he, SUN Yu-sheng, YAO Shi-qian, LI Zhong-xian. RESTORING FORCE MODEL AND EXPERIMENTAL VERIFICATION OF AN ASSEMBLED SELF-CENTERING ENERGY DISSIPATION BRACE[J]. Engineering Mechanics, 2019, 36(6): 119-127,146. DOI: 10.6052/j.issn.1000-4750.2018.04.0249
Citation: XU Long-he, SUN Yu-sheng, YAO Shi-qian, LI Zhong-xian. RESTORING FORCE MODEL AND EXPERIMENTAL VERIFICATION OF AN ASSEMBLED SELF-CENTERING ENERGY DISSIPATION BRACE[J]. Engineering Mechanics, 2019, 36(6): 119-127,146. DOI: 10.6052/j.issn.1000-4750.2018.04.0249

装配式自复位耗能支撑恢复力模型与试验验证

基金项目: 国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)
详细信息
    作者简介:

    孙雨生(1996-),男,安徽省人,硕士生,从事结构抗震研究(E-mail:17121106@bjtu.edu.cn);要世乾(1993-),男,河北省人,硕士生,从事结构抗震研究(E-mail:15121118@bjtu.edu.cn);李忠献(1961-),男,安徽省人,长江学者特聘教授,博士,从事工程结构抗震抗爆、减灾控制与健康监测研究(E-mail:zxli@tju.edu.cn).

    通讯作者:

    徐龙河(1976-),男,黑龙江人,教授,博士,博导,从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn).

  • 中图分类号: TU352.11

RESTORING FORCE MODEL AND EXPERIMENTAL VERIFICATION OF AN ASSEMBLED SELF-CENTERING ENERGY DISSIPATION BRACE

  • 摘要: 提出一种装配式自复位耗能(ASCED)支撑,该支撑主要由核心杆、外管、摩擦耗能系统和碟簧复位系统组成。对ASCED支撑在低周往复荷载作用下的工作原理及力学性能进行了介绍,基于经典的Bouc-Wen模型建立了ASCED支撑的恢复力模型。设计并加工了一长为1.2 m的ASCED支撑试件,对其进行了拟静力试验,研究了支撑滞回特性、耗能能力、残余变形等性能。结果表明在低周往复荷载下支撑的摩擦耗能系统与碟簧复位系统能有效的共同工作,呈现出饱满的旗形滞回曲线,具有稳定的耗能能力和良好的自复位性能。恢复力模型计算得到的支撑滞回曲线与试验结果吻合较好,残余变形接近,表明所建立的恢复力模型能够准确描述ASCED支撑在低周往复荷载下的滞回特性及自复位性能。
    Abstract: An assembled self-centering energy dissipation (ASCED) brace is proposed, which consists of an inner bar, an outer tube, a friction energy dissipation system and a disc-spring self-centering system. The working principle and mechanical behavior of the ASCED brace under low cyclic loading are presented. A restoring force model of the ASCED brace is developed on the basis of the classical Bouc-Wen model. An ASCED brace specimen with a total length of 1.2 m was designed and fabricated, and a series of quasi-static tests were conducted to study its hysteretic behavior, energy dissipation capacity, residual deformation and other properties. The results indicate that the friction energy dissipation system and the disc-spring self-centering system of the ASCED brace can work together effectively, and the ASCED brace exhibits full hysteretic responses with stable energy dissipation and excellent self-centering capabilities. The hysteresis curve calculated by the restoring force model agrees well with the experimental results and has similar residual deformation, indicating that the proposed restoring force model can accurately describe the hysteretic behavior and self-centering performance of the ASCED brace.
  • [1] Tremblay R, Robert N. Seismic performance of low-and medium-rise chevron braced steel frame[J]. Canadian Journal of Civil Engineering, 2011, 27(6):1192-1206.
    [2] Christopoulos C, Pampanin S, Nigel Priestley M J. Performance-based seismic response of frame structures including residual deformations. Part I:Single-degree of freedom systems[J]. Journal of Earthquake Engineering, 2003, 7(1):97-118.
    [3] Zhu S, Zhang Y. Seismic behavior of self-centering braced frame buildings with reusable hysteretic damping brace[J]. Earthquake engineering & structural dynamics, 2007, 36(10):1329-1346.
    [4] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
    [5] Chou C C, Wang Y C, Chen J H. Seismic design and behavior of post-tensioned steel connections including effects of a composite slab[J]. Engineering Structures, 2008, 30(11):3014-3023.
    [6] Chou C C, Chen J H. Seismic design and shake table tests of a steel post-tensioned self-centering moment frame with a slab accommodating frame expansion[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(11):1241-1261.
    [7] Miller D J. Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy[D]. Urbana, Illinois:University of Illinois at Urbana-Champaign, 2011:76-129.
    [8] Miller D J, Fahnestock L A, Eatherton M R. Self-centering buckling-restrained braces for advanced seismic performance[C]//Proceedings of the 2011 Structures Congress. Las Vegas, USA:Structural Engineering Institute of ASCE, 2011:960-970.
    [9] Miller D J, Fahnestock L A, Eatherton M R. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures, 2012, 40:288-298.
    [10] 刘璐. 自复位防屈曲支撑结构抗震性能及设计方法[D]. 哈尔滨:哈尔滨工业大学, 2013. Liu Lu. Seismic behavior and design of structure with self-centering buckling-restrained braces[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
    [11] 刘璐, 吴斌, 李伟, 等. 自复位防屈曲支撑结构动力位移反应的关键参数[J]. 工程力学, 2016, 33(1):188-194. Liu Lu, Wu Bin, Li Wei, et al. Key parameters of structure with self-centering buckling-restrained braces for seismic analysis[J]. Engineering Mechanics, 2016, 33(1):188-194. (in Chinese)
    [12] 刘璐, 吴斌, 李伟, 等. 等效线性化方法在自复位防屈曲支撑结构中的应用[J]. 工程力学, 2016, 33(3):204-213. Liu Lu, Wu Bin, Li Wei, et al. The application of the equivalent linearization methodology in self-centering buckling-restrained braced frames[J]. Engineering Mechanics, 2016, 33(3):204-213. (in Chinese)
    [13] 徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究[J]. 建筑结构学报, 2016, 37(9):142-148. Xu Longhe, Fan Xiaowei, Dai Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(9):142-148. (in Chinese)
    [14] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-122. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation brace[J]. Engineering Mechanics, 2016, 33(10):116-122. (in Chinese)
    [15] Xu Longhe, Fan Xiaowei, Li Zhongxian. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs[J]. Journal of Constructional Steel Research, 2017, 139:363-373.
    [16] 高丛峰. 温度和应变率对拉伸载荷下记忆合金本构关系的影响[J]. 天津大学学报, 2001, 34(3):372-375. Gao Congfeng. Study on effect of temperature and strain rate on constitutive relation of shape memory alloy under tension[J]. Journal of Tianjin University, 2001, 34(3):372-375. (in Chinese).
    [17] Ismail M, Ikhouane F, José Rodellar. The hysteresis Bouc-Wen model, a survey[J]. Archives of Computational Methods in Engineering, 2009, 16(2):161-188.
    [18] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of Engineering Mechanics, 1976, 102(2):249-263.
    [19] Rodellar F I J. Systems with hysteresis-analysis, identification and control using the Bouc-Wen model[M]. West Sussex, England:John Wiley & Sons Ltd, 2007:14-18.
    [20] Triantafyllou S, Koumousis V. An inelastic Timoshenko beam element with axial-shear-flexural interaction[J]. Computational Mechanics, 2011, 48(6):713-727.
    [21] Xu Longhe, Fan Xiaowei, Li Zhongxian. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
    [22] Ma F, Zhang H, Bockstedte A, et al. Parameters analysis of the differential model of hysteresis[J]. Journal of Applied Mechanics, 2004, 71(3):342-349.
    [23] 余波, 洪汉平, 杨绿峰. 非弹性体系地震动力响应分析的新型单轴Bouc-Wen模型[J]. 工程力学, 2012, 29(12):265-294. Yu Bo, Hong Hanping, Yang Lüfeng. Improved uniaxial Bouc-Wen model for seismic dynamic response analysis of inelastic system[J]. Engineering Mechanics, 2012, 29(12):265-294. (in Chinese)
    [24] Goda K, Hong H P, Lee C S. Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior[J]. Journal of Earthquake Engineering, 2009, 13(5):600-622.
  • 期刊类型引用(3)

    1. 王晓明,赵建领,孙远,汪帆,王欢,李鹏飞,陶沛,贺耀北. 考虑吊索拉伸效应的空间索面自锚式悬索桥无量纲连续体动力模型. 工程力学. 2023(08): 189-201 . 本站查看
    2. 罗凌峰,单德山,陈奉民,陈品诣. 销接式索夹悬索桥成桥线形的高精度计算方法. 工程力学. 2021(08): 133-144 . 本站查看
    3. 陈英昊,朱福先,李润达. 基于悬索桥割索现象的施工方案优化. 市政技术. 2018(03): 60-63 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  457
  • HTML全文浏览量:  43
  • PDF下载量:  119
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-11-15
  • 刊出日期:  2019-06-24

目录

    /

    返回文章
    返回