[1] |
Li V C, Leung C Y. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites[J]. ASCE Journal of Engineering Mechanics, 1992, 188(11):2246-2264.
|
[2] |
徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. Xu Shilang, Li Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-60. (in Chinese)
|
[3] |
徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报, 2009, 40(9):1055-1063. Xu Shilang, Cai Xiangrong. Basic mechanical performance of ultra high toughness cementitious composites[J]. Journal of Hydraulic Engineering, 2009, 40(9):1055-1063. (in Chinese)
|
[4] |
李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊2):23-67. Li Qinghua, Xu Shilang. Performance and application of ultra high toughness cementitious composite:a review[J]. Engineering Mechanics, 2009, 26(Suppl 2):23-67. (in Chinese)
|
[5] |
刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连:大连理工大学, 2012:95-112. Liu Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites[D]. Dalian:Dalian University of Technology, 2012:95-112. (in Chinese)
|
[6] |
李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究[J]. 工程力学, 2017, 34(2):85-93. Li Qinghua, Zhao Xin, Xu Shilang. Impact compression properties of nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar[J]. Engineering Mechanics, 2017, 34(2):85-93. (in Chinese)
|
[7] |
蔡向荣, 徐世烺. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J]. 工程力学, 2010, 27(1):8-16. Cai Xiangrong, Xu Shilang. Study on corresponding relationships between flexural load-deformation hardening curves and tensile stress-strain hardening curves of UHTCC[J]. Engineering Mechanics, 2010, 27(1):8-16. (in Chinese)
|
[8] |
杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4):138-144. Du Xiuli, Dou Guoqin, Li Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4):138-144. (in Chinese)
|
[9] |
焦楚杰, 李祯, 高乐. 混凝土SHPB试验的数值模拟[J]. 工程力学, 2010, 27(增刊2):196-200. Jiao Chujie, Li Zhen, Gao Le. Numerical simulation of SHPB test of concrete[J]. Engineering Mechanics, 2010, 27(Suppl 2):196-200. (in Chinese)
|
[10] |
陈猛, 李艺, 卢哲安, 等. 混杂纤维混凝土动态压缩性能试验及数值模拟研究[J]. 混凝土, 2015(8):91-94. Chen Meng, Li Yi, Lu Zhean, et al. Study on dynamic compression properties and numerical simulation of hybrid fiber reinforced concrete[J]. Concrete, 2015(8):91-94. (in Chinese)
|
[11] |
张文华, 张云升. 超高性能水泥基复合材料动态冲击性能及数值模拟[J]. 混凝土, 2015(10):60-63. Zhang Wenhua, Zhang Yunsheng. Dynamic impact properties and simulation of ultra-high performance of cementitious composites[J]. Concrete, 2015(10):60-63. (in Chinese)
|
[12] |
Lv T H, Chen X W, Chen G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen[J]. Construction and Building Materials, 2018, 160:744-764.
|
[13] |
Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Michael J M. Proceedings of the 14th International Symposium on Ballistics. Sundbyberg:National Defence Research Establishment, 1993.
|
[14] |
Polanco-Loria M, Hopperstad O S, Børvik T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model[J]. International Journal of Impact Engineering, 2008, 35(5):290-303.
|
[15] |
Rong Zhidan, Sun Wei. Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites[J]. Construction and Building Materials, 2012, 31:168-173.
|
[16] |
Kong Xiangzhen, Fang Qin, Wu Hao, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95:61-71.
|
[17] |
高翔. 纳米SiO2改性超高韧性水泥基复合材料试验研究[D]. 杭州:浙江大学, 2016:108-129. Gao Xiang. Experimental study on ultra-high toughness cementitious-composites with nano-SiO2[D]. Hangzhou:Zhejiang University, 2016:108-129. (in Chinese)
|
[18] |
任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18):9-16. Ren Genmao, Wu Hao, Fang Qin, et al. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18):9-16. (in Chinese)
|
[19] |
熊益波, 陈剑杰, 胡永乐, 等. 混凝土JohnsonHolmquist本构模型关键参数研究[J]. 工程力学, 2012, 29(1):121-127. Xiong Yibo, Chen Jianjie, Hu Yongle, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete[J]. Engineering Mechanics, 2012, 29(1):121-127. (in Chinese)
|
[20] |
陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究[J]. 高压物理学报, 2012, 26(3):313-318. Chen Xingming, Liu Tong, Xiao Zhengxue. Numerical simulation research on HJC constitutive model sensitivity of penetration resistance of concrete[J]. Chinese Journal of High Pressure Physics, 2012, 26(3):313-318. (in Chinese)
|
[21] |
巫绪涛, 李耀, 李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报, 2010, 27(2):340-344. Wu Xutao, Li Yao, Li Heping. Investigation on HJC constitutive model of concrete[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):340-344. (in Chinese)
|
[22] |
吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究[J]. 计算力学学报, 2015, 32(6):789-795. Wu Sai, Zhao Junhai, Wang Juan, et al. Numerical analysis on HJC parameters of concrete using SHPB test[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):789-795. (in Chinese)
|
[23] |
李艳, 王伟伟, 温从格. ECC常规三轴受压力学性能试验研究[J]. 混凝土, 2016(1):59-63. Li Yan, Wang Weiwei, Wen Congge. Experiment study on mechanical performance of ECC under conventional triaxial compression[J]. Concrete, 2016(1):59-63. (in Chinese)
|
[24] |
Wu Zemei, Shi Caijun, He Wen, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements[J]. Cement and Concrete Composites, 2017, 79:148-157.
|
[25] |
曹吉星. 钢纤维混凝土的动态本构模型及其有限元方法[D]. 成都:西南交通大学, 2011:49-53.Cao Jixing. Dynamic constitutive model of steel fiber reinforced concrete and its finite element method[D]. Chengdu:Southwest Jiaotong University, 2011:49-53. (in Chinese)
|
[26] |
崔昭. 钢-PVA混杂纤维混凝土动态本构模型及其有限元分析[D]. 广州:华南理工大学, 2016:38-42. Cui Zhao. Dynamic constitutive model and finite element analysis of steel-PVA hybrid fiber concrete[D]. Guangzhou:South China University of Technology, 2016:38-42. (in Chinese)
|
[27] |
Li Qinghua, Zhao Xin, Xu Shilang, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials, 2016, 125:490-500.
|
[28] |
Wang Shasha, Le H T N, Poh L H, et al. Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete[J]. Construction and Building Materials, 2017, 136:31-43.
|
[29] |
万世强. 钢-PVA混杂纤维增强水泥基复合材料冲击特性研究[D]. 哈尔滨:哈尔滨工业大学, 2016:72-73. Wan Shiqiang. The impact performance experimental study of steel and PVA hybrid fiber reinforced cementitious composites[D]. Harbin:Harbin Institute of Technology, 2016:72-73. (in Chinese)
|
[30] |
丁彦江. 钢-PVA混杂纤维增强水泥基复合材料冲击压缩动力性能试验研究[D]. 广州:华南理工大学, 2014:40-44. Ding Yanjiang. The shock compression dynamic performance experimental study of Steel and PVA hybrid fiber reinforced cement matrix composites[D]. Guangzhou:South China University of Technology, 2014:40-44. (in Chinese)
|
[31] |
Su Haoyang, Xu Jinyu. Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load[J]. Construction and Building Materials, 2013, 45:306-313.
|
[32] |
Rong Zhidan, Sun Wei, Zhang Yunsheng. Dynamic compression behavior of ultra-high performance cement based composites[J]. International Journal of Impact Engineering, 2010, 31:515-520.
|