纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究

曹亮, 张海燕, 吴波

曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215. DOI: 10.6052/j.issn.1000-4750.2017.11.0881
引用本文: 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215. DOI: 10.6052/j.issn.1000-4750.2017.11.0881
CAO Liang, ZHANG Hai-yan, WU Bo. SHEAR BEHAVIOR OF RC BEAMS STRENGTHENED WITH TEXTILE REINFORCED GEOPOLYMER MORTAR[J]. Engineering Mechanics, 2019, 36(1): 207-215. DOI: 10.6052/j.issn.1000-4750.2017.11.0881
Citation: CAO Liang, ZHANG Hai-yan, WU Bo. SHEAR BEHAVIOR OF RC BEAMS STRENGTHENED WITH TEXTILE REINFORCED GEOPOLYMER MORTAR[J]. Engineering Mechanics, 2019, 36(1): 207-215. DOI: 10.6052/j.issn.1000-4750.2017.11.0881

纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究

基金项目: 国家自然科学基金项目(51478195);广东省交通运输厅科技项目(科技-2016-02-008);广州市科技计划项目(201804010438)
详细信息
    作者简介:

    曹亮(1989-),男,江西人,硕士,主要从事结构抗火、地聚物材料领域的研究(E-mail:caoliangzxc27@163.com);吴波(1968-),男,重庆人,研究员,博士,从事混凝土结构抗震、抗火性能研究和再生混凝土结构领域的研究(E-mail:bowu@scut.edu.cn).

    通讯作者:

    张海燕(1978-),女,湖南人,教授,博士,从事结构加固、结构抗火和新型混凝土材料领域研究(E-mail:zhanghy@scut.edu.cn).

  • 中图分类号: TU375.1

SHEAR BEHAVIOR OF RC BEAMS STRENGTHENED WITH TEXTILE REINFORCED GEOPOLYMER MORTAR

  • 摘要: 为研究纤维编织网增强地聚物砂浆(TRGM)加固钢筋混凝土构件的可行性,首先通过双剪试验探讨了地聚物砂浆与碳纤维编织网在常温下和高温后的粘结性能,随后开展了地聚物砂浆粘贴不同层数(1层、2层、3层)碳纤维编织网抗剪加固钢筋混凝土梁的静载试验,并与未加固梁、环氧树脂粘贴碳纤维编织网抗剪加固混凝土梁进行了试验比较。试验结果表明,地聚物砂浆与碳纤维编织网的常温粘结强度达2.02 MPa,在温度不高于300℃时强度退化不显著;在未采取任何锚固措施的情况下,采用地聚物砂浆粘贴单层碳纤维编织网加固梁的抗剪承载力相比于未加固梁提高47.1%,提高幅度约为采用环氧树脂粘贴加固的一半;两层TRGM加固梁中的纤维作用发挥得最充分。最后,提出了TRGM抗剪加固梁斜截面承载力的简化计算模型,模型计算结果与试验结果吻合较好。
    Abstract: To investigate the feasibility of using textile reinforced geopolymer mortar (TRGM) to strengthen concrete members, the bond strength of geopolymer mortar with carbon fiber textile was tested at ambient temperature and after exposure to elevated temperatures, through double shear tests. Then static load tests were conducted on RC beams shear strengthened with different layers of TRGM (1 layer, 2 layers and 3 layers). Also, one unstrengthened beam, and one shear strengthened beam with textile using epoxy resin as adhesive, were tested for comparison. Test results show that the bond strength of geopolymer mortar with carbon fiber textile at ambient temperature reached 2.02 MPa, and that no significant strength degradation occurred at a temperature not higher than 300℃. Compared to the unstrengthened beam, the shear bearing capacity of the RC beam strengthened by a single layer of TRGM, without special anchorage measures, is increased by 47.1%. This increasing extent is about one half of that of the beam strengthened with textile using epoxy resin as adhesive. The highest strengthening effectiveness is achieved in the beam strengthened by two layers of TRGM, in which the tensile strength of fibers was fully utilized. Finally, a simplified model for calculating shear bearing capacity of TRGM strengthened RC beams is proposed, and the calculated results using this model agree well with the test results.
  • [1] Colombo I G, Magri A, Zani G, et al. Textile reinforced concrete:experimental investigation on design parameters[J]. Materials and Structures, 2013, 46(11):1933-1951.
    [2] Papanicolaou C G, Triantafillou T C, Papathanasiou M, et al. Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls:out-of-plane cyclic loading[J]. Materials and Structures, 2008, 41(1):143-157.
    [3] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1):27-40. Ai Shanxia, Yin Shiping, Xu Shilang. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal, 2015, 48(1):27-40. (in Chinese)
    [4] Escrig C, Gil L, Bernat-Maso E, et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar[J]. Construction and Building Materials, 2015, 83:248-260.
    [5] Xu S, Shen L, Wang J. The high-temperature resistance performance of TRC thin-plates with different cementitious materials:Experimental study[J]. Construction and Building Materials, 2016, 115:506-519.
    [6] 薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(3):228-236. Xue Yadong, Liu Dejun, Huang Hongwei, et al. Experimental study on eccentric compression short columns strengthened by textile-reinforced concrete on side[J]. Engineering Mechanics, 2014, 31(3):228-236. (in Chinese)
    [7] Abadel A A. Textile-reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints[J]. Journal of Composites for Construction, 2011, 15(6):920-933.
    [8] 刘德军, 黄宏伟, 薛亚东, 等. 纤维编织网增强混凝土补强隧道衬砌力学性能研究[J]. 工程力学, 2014, 31(7):91-98, 111 Liu Dejun, Huang Hongwei, Xue Yadong, et al. Research on behavior of tunnel lining strengthened by textile-reinforced concrete[J]. Engineering Mechanics, 2014, 31(7):91-98, 111. (in Chinese)
    [9] Duxson P, Provis J L, Lukey G C, et al. The role of inorganic polymer technology in the development of green concrete[J]. Cement and Concrete Research, 2007, 37(12):1590-1597.
    [10] Vasconcelos E, Fernandes S, Aguiar J, et al. Concrete retrofitting using metakaolin geopolymer mortars and CFRP[J]. Construction and Building Materials, 2011, 25(8):3213-3221.
    [11] Zhang H Y, Kodur V, Wu B, et al. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures[J]. Construction and Building Materials, 2016, 109:17-24.
    [12] Chen J F, Teng J G. Anchorage strength models for frp and steel plates bonded to concrete[J]. Journal of Structural Engineering, 2001, 127(7):784-791.
    [13] GB/T 3362-2005, 碳纤维复丝拉伸性能试验方法[S]. 北京:中国标准出版社, 2005. GB/T 3362-2005, Test methods for tensile properties of carbon fiber multifilament[S]. Beijing:Standards Press of China, 2005. (in Chinese)
    [14] Serbescu A, Guadagnini M, Pilakoutas K. Standardised double-shear test for determining bond of FRP to concrete and corresponding model development[J]. Composites Part B Engineering, 2013, 55(12):277-297.
    [15] Cromwell J R, Harries K A, Shahrooz B M. Environmental durability of externally bonded FRP materials intended for repair of concrete structures[J]. Construction and Building Materials, 2011, 25(5):2528-2539.
    [16] Ahmed A, Kodur V K R. Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams[J]. Composites Part B Engineering. 2011, 42(2):226-237.
    [17] Triantafillou T C, Papanicolaou C G. Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets[J]. Materials and Structures, 2006, 39(1):93-103.
    [18] Zhuang H J, Zhang H Y, Xu H. Resistance of geopolymer mortar to acid and chloride attacks[J]. Procedia Engineering, 2017, 210:126-131.
    [19] Colangelo F, Cioffi R, Roviello G, et al. Thermal cycling stability of fly ash based geopolymer mortars[J]. Composites Part B:Engineering, 2017, 129:11-17.
    [20] Huseien G F, Mirza J, Ismail M, et al. Geopolymer mortars as sustainable repair material:A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 80:54-74.
    [21] Firmo J P, Correia J R. Fire behaviour of thermally insulated RC beams strengthened with NSM-CFRP strips:Experimental study[J]. Composites Part B Engineering, 2015, 122:144-154.
    [22] ACI 440.2R-08, Guide for design and construction of externally bonded frp systems for strengthening concrete structures[S]. Farmington Hills, MI, USA:American Concrete Institute, 2008.
    [23] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture &Building Press, 2010. (in Chinese)
    [24] Ombres L. Structural performances of reinforced concrete beams strengthened in shear with a cement-based fiber composite material[J]. Composite Structures, 2015, 122(122):316-329.
    [25] CECS 146-2003(2007), 碳纤维片材加固混凝土结构技术规程[S]. 北京:中国计划出版社出版, 2007. CECS 146-2003(2007), Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate[S]. Beijing:China Planning Press, 2007. (in Chinese)
  • 期刊类型引用(15)

    1. 张海燕,陈海标,吴波,李梦圆. 纤维网增强地聚物砂浆加固双向板的抗弯性能. 华南理工大学学报(自然科学版). 2025(02): 115-123 . 百度学术
    2. 钟正强,刘珺,郭凯军,陈子慕. 端锚CFRP网格U型箍加固RC箱梁抗弯性能试验. 建筑科学与工程学报. 2025(02): 93-100 . 百度学术
    3. 杨雨峤,朱健. 纤维编织网增强砂浆加固泵站梁抗剪性能的数值研究. 水利技术监督. 2024(02): 205-210 . 百度学术
    4. 石姗姗,吕航宇,吕超雨,苏智博,孙直. 随机多孔碳纤维纸的非线性面外压缩本构模型. 工程力学. 2023(01): 249-256 . 本站查看
    5. 王博,王媛媛,王征鹏,张军雷,王天松. CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法. 复合材料学报. 2023(02): 990-1003 . 百度学术
    6. 刘决丁,范向前,叶宇霄,葛菲. 基于解析方法的FRP增强混凝土梁失稳前断裂过程分析. 工程力学. 2023(10): 129-140 . 本站查看
    7. 王青. 纤维网格增强超高性能混凝土加固钢筋混凝土梁受剪性能试验研究. 菏泽学院学报. 2023(05): 65-71 . 百度学术
    8. 吴小宾,陈鹏,高峰. 基于加固效费比的砌体结构抗震加固方案优选方法研究. 工程力学. 2022(05): 167-176 . 本站查看
    9. 郭莉英,邓明科,马钰人,张雨顺,张伟. 纤维网格高延性混凝土加固RC柱抗剪性能试验研究. 工程力学. 2022(06): 43-54 . 本站查看
    10. 陈军锋,刘孙文,周哲,赵超,陈渊. 玄武岩纤维织物增强砂浆薄板抗弯性能试验研究. 四川建材. 2022(10): 24-25 . 百度学术
    11. 邓明科,宋诗飞,张敏,马福栋,陈尚城,张阳玺. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算. 工程力学. 2021(09): 36-44+63 . 本站查看
    12. 张童,雷真,朱争光,吴亚玲. 地震作用下纤维编织网增强钢筋混凝土柱的抗震性能分析. 地震工程学报. 2020(01): 57-62+72 . 百度学术
    13. 刘岩,叶涛萍,曹万林. 地聚物混凝土结构研究与发展. 自然灾害学报. 2020(04): 8-19 . 百度学术
    14. 张劲泉,李鹏飞,韦韩,王仙. 注浆加固预应力混凝土空心板梁抗剪性能试验研究. 工程力学. 2020(S1): 32-41 . 本站查看
    15. 邓明科,郭莉英,李睿喆,陈佳莉. 高延性混凝土加固钢筋混凝土梁抗震性能试验研究. 工程力学. 2020(11): 47-57 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  706
  • HTML全文浏览量:  139
  • PDF下载量:  154
  • 被引次数: 28
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-04-15
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回