破冰船在层冰中运动的数值模拟方法

高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉

高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237. DOI: 10.6052/j.issn.1000-4750.2017.10.0785
引用本文: 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237. DOI: 10.6052/j.issn.1000-4750.2017.10.0785
GAO Liang-tian, WANG Jian-wei, WANG Qing, JIA Bin, WANG Yong-kui, SHI Li. NUMERICAL SIMULATION METHOD FOR MOTIONS OF THE ICEBREAKER IN LEVEL ICE[J]. Engineering Mechanics, 2019, 36(1): 227-237. DOI: 10.6052/j.issn.1000-4750.2017.10.0785
Citation: GAO Liang-tian, WANG Jian-wei, WANG Qing, JIA Bin, WANG Yong-kui, SHI Li. NUMERICAL SIMULATION METHOD FOR MOTIONS OF THE ICEBREAKER IN LEVEL ICE[J]. Engineering Mechanics, 2019, 36(1): 227-237. DOI: 10.6052/j.issn.1000-4750.2017.10.0785

破冰船在层冰中运动的数值模拟方法

基金项目: 国家重点研发计划战略性国际科技创新合作重点专项项目(2016YFE0202700)
详细信息
    作者简介:

    高良田(1964-),男,辽宁人,教授,硕士,硕导,主要从事船舶总体优化设计研究(E-mail:gaoliangtian@hrbeu.edu.cn);王键伟(1993-),男,黑龙江人,硕士生,主要从事破冰船运动数值仿真研究(E-mail:wangjw0519@126.com);贾宾(1994-),男,山东人,博士生,主要从事船-冰作用中海冰破坏模式研究(E-mail:jiabin994830@live.cn);王永魁(1993-),男,江苏人,博士生,主要从事结冰过程数值模拟与实验研究(E-mail:kui930927@163.com);石莉(1993-),女,浙江人,硕士生,主要从事船-冰相互作用NFEM研究(E-mail:shili_lily_xc@163.com).

    通讯作者:

    王庆(1972-),男,黑龙江人,教授,博士,硕导,主要从事极地船舶冰载荷数值计算方法研究(E-mail:wangqing@hrbeu.edu.cn).

  • 中图分类号: U674.21;U661.31+1

NUMERICAL SIMULATION METHOD FOR MOTIONS OF THE ICEBREAKER IN LEVEL ICE

  • 摘要: 为研究破冰船在层冰中运动的特点与海冰的破坏方式,该文建立了包含冰载荷、敞水阻力、螺旋桨推力与舵力的六自由度动力学方程。考虑海冰的弹性弯曲对破冰力的影响,引入海冰的二次断裂与动态弯曲破坏准则,提出了更加精确、完善的船-冰动态接触模型。在此基础上,对瑞典破冰船Tor Viking Ⅱ在层冰中的直航与回转运动进行了数值模拟,并与全尺寸试验数据对比,验证了数值模拟结果的合理性。结果表明:模拟运动轨迹与真实运动轨迹相符,最大回转直径的相对误差仅为3.32%,因此本文建立的数值模拟方法能够真实地模拟破冰船在层冰中的运动。
    Abstract: To study the motion characteristics of the icebreaker in level ice and the failure mode of sea ice, a six-degrees-of-freedom kinetic equation is established including ice loads, open water resistance, propeller thrust and rudder forces. Considering the influence of the elastic bending of sea ice on icebreaking force, the secondary fracture and the dynamic bending failure criterion of sea ice are introduced, so that a more accurate and perfect ship-ice dynamic contact model is proposed. Based on these theories, the direct sailing and the turning motions of the Swedish icebreaker, Tor Viking Ⅱ, are simulated in level ice. The numerical simulation results are compared with full-scale trial data to verify its rationality. The results indicate that the simulated trajectory is consistent with the real trajectory. The relative error of the maximum turning diameter is only 3.32%. Therefore, the numerical simulation method established in this paper is able to authentically simulate the motions of the icebreaker in level ice.
  • [1] Ettema R, Sharifi M B, Georgakakos K P, et al. Chaos in continuous-mode icebreaking[J]. Cold Regions Science & Technology, 1991, 19(2):131-144.
    [2] Izumiyama K, Kitagawa H, Koyama K, et al. On the interaction between a conical structure and ice sheet[C]//11st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 1991:155-166.
    [3] Liu R, Xue Y, Lu X, et al. Simulation of ship navigation in ice rubble based on peridynamics[J]. Ocean Engineering, 2018, 148:286-298.
    [4] 黄焱, 关湃, 禹沐. 破冰船航行状态在海冰作用下的运动响应分析[J]. 数学的实践与认识, 2015, 45(2):149-160. Huang Yan, Guan Pai, Yu Mu. Study of the sailing's moving responses of an icebreaker in ice[J]. Mathematics in Practice & Theory, 2015, 45(2):149-160. (in Chinese)
    [5] Kashtelyan V I, Poznyak I I, Ryvlin A Y. Resistance of ice to ship movement[J]. Sudostroyeniye (Soviet Shipbuilding)[USSR], 1968.
    [6] Lindqvist G. A straightforward method for calculation of ice resistance of ships[C]//10th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 1989:722-735.
    [7] Varsta P. On the mechanics of ice load on ships in level ice in the Baltic Sea[J]. 1983(8).
    [8] Wang S. A dynamic model for breaking pattern of level ice by conical structures[J]. 2001(156):2+6-94.
    [9] Su B, Riska K, Moan T. A numerical method for the prediction of ship performance in level ice[J]. Cold Regions Science & Technology, 2010, 60(3):177-188.
    [10] Tan X, Su B, Riska K, et al. A six-degrees-of-freedom numerical model for level ice-ship interaction[J]. Cold Regions Science & Technology, 2013, 92(8):1-16.
    [11] 周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6):21-29. Zhou Zhaoming, Sheng Ziyin, Feng Wushi. On maneuverability prediction for multipurpose cargo ship[J]. Ship Engineering, 1983(6):21-29. (in Chinese)
    [12] Bertram V. Practical ship hydrodynamics[M]. Oxford, UK:Elsevier/Butterworth-Heinemann, 2012:177-203.
    [13] 盛振邦, 刘应中. 船舶原理. 下册[M]. 上海:上海交通大学出版社, 2005:304-332. Sheng Zhenbang, Liu Yingzhong. Principle of naval architecture. Vol. 2[M]. Shanghai:Shanghai Jiaotong University Press, 2005:304-332. (in Chinese)
    [14] Haines E. Point in polygon strategies[J]. Graphics Gems IV, 1994:24-46.
    [15] Zhou Q, Peng H, Qiu W. Numerical investigations of ship-ice interaction and maneuvering performance in level ice[J]. Cold Regions Science & Technology, 2016, 122(1):36-49.
    [16] Riska K. Models of ice-structure contact for engineering applications[J]. Studies in Applied Mechanics, 1995, 42(06):77-103.
    [17] Kerr A D. The bearing capacity of floating ice plates subjected to static or quasi-static loads[J]. Journal of Glaciology, 1975, 17(76):229-268.
    [18] Tan X, Su B, Riska K, et al. The effect of heave, pitch and roll motions to ice performance of ships[C]//Iahr International Symposium on Ice, 2012:1080-1093.
    [19] Valanto P. The icebreaking problem in two dimensions:experiments and theory[J]. Journal of Ship Research, 1992, 36(4):299-316.
    [20] 武文华, 于佰杰, 许宁, 等. 海冰与锥体抗冰结构动力作用的数值模拟[J]. 工程力学, 2008, 25(11):192-196. Wu Wenhua, Yu Baijie, Xu Ning, et al. Numerical simulation of dynamic ice action on conical structure[J]. Engineering Mechanics, 2008, 25(11):192-196. (in Chinese)
    [21] 王刚, 武文华, 岳前进. 锥体接触宽度对冰排弯曲破坏模式影响的有限元分析[J]. 工程力学, 2008, 25(1):235-240. Wang Gang, Wu Wenhua, Yue Qianjin. FEM analysis on ice-bending failure mode with width effect of ice-cone interaction[J]. Engineering Mechanics, 2008, 25(1):235-240. (in Chinese)
    [22] Di S, Xue Y, Wang Q, et al. Discrete element simulation of ice loads on narrow conical structures[J]. Ocean Engineering, 2017, 146(12):282-297.
    [23] Riska K, Leiviskä T, Nyman T, et al. Ice performance of the Swedish multi-purpose icebreaker Tor Viking Ⅱ[C]//16st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 2001:849-866.
计量
  • 文章访问数:  546
  • HTML全文浏览量:  53
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-16
  • 修回日期:  2018-01-15
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回