[1] |
Ettema R, Sharifi M B, Georgakakos K P, et al. Chaos in continuous-mode icebreaking[J]. Cold Regions Science & Technology, 1991, 19(2):131-144.
|
[2] |
Izumiyama K, Kitagawa H, Koyama K, et al. On the interaction between a conical structure and ice sheet[C]//11st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 1991:155-166.
|
[3] |
Liu R, Xue Y, Lu X, et al. Simulation of ship navigation in ice rubble based on peridynamics[J]. Ocean Engineering, 2018, 148:286-298.
|
[4] |
黄焱, 关湃, 禹沐. 破冰船航行状态在海冰作用下的运动响应分析[J]. 数学的实践与认识, 2015, 45(2):149-160. Huang Yan, Guan Pai, Yu Mu. Study of the sailing's moving responses of an icebreaker in ice[J]. Mathematics in Practice & Theory, 2015, 45(2):149-160. (in Chinese)
|
[5] |
Kashtelyan V I, Poznyak I I, Ryvlin A Y. Resistance of ice to ship movement[J]. Sudostroyeniye (Soviet Shipbuilding)[USSR], 1968.
|
[6] |
Lindqvist G. A straightforward method for calculation of ice resistance of ships[C]//10th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 1989:722-735.
|
[7] |
Varsta P. On the mechanics of ice load on ships in level ice in the Baltic Sea[J]. 1983(8).
|
[8] |
Wang S. A dynamic model for breaking pattern of level ice by conical structures[J]. 2001(156):2+6-94.
|
[9] |
Su B, Riska K, Moan T. A numerical method for the prediction of ship performance in level ice[J]. Cold Regions Science & Technology, 2010, 60(3):177-188.
|
[10] |
Tan X, Su B, Riska K, et al. A six-degrees-of-freedom numerical model for level ice-ship interaction[J]. Cold Regions Science & Technology, 2013, 92(8):1-16.
|
[11] |
周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6):21-29. Zhou Zhaoming, Sheng Ziyin, Feng Wushi. On maneuverability prediction for multipurpose cargo ship[J]. Ship Engineering, 1983(6):21-29. (in Chinese)
|
[12] |
Bertram V. Practical ship hydrodynamics[M]. Oxford, UK:Elsevier/Butterworth-Heinemann, 2012:177-203.
|
[13] |
盛振邦, 刘应中. 船舶原理. 下册[M]. 上海:上海交通大学出版社, 2005:304-332. Sheng Zhenbang, Liu Yingzhong. Principle of naval architecture. Vol. 2[M]. Shanghai:Shanghai Jiaotong University Press, 2005:304-332. (in Chinese)
|
[14] |
Haines E. Point in polygon strategies[J]. Graphics Gems IV, 1994:24-46.
|
[15] |
Zhou Q, Peng H, Qiu W. Numerical investigations of ship-ice interaction and maneuvering performance in level ice[J]. Cold Regions Science & Technology, 2016, 122(1):36-49.
|
[16] |
Riska K. Models of ice-structure contact for engineering applications[J]. Studies in Applied Mechanics, 1995, 42(06):77-103.
|
[17] |
Kerr A D. The bearing capacity of floating ice plates subjected to static or quasi-static loads[J]. Journal of Glaciology, 1975, 17(76):229-268.
|
[18] |
Tan X, Su B, Riska K, et al. The effect of heave, pitch and roll motions to ice performance of ships[C]//Iahr International Symposium on Ice, 2012:1080-1093.
|
[19] |
Valanto P. The icebreaking problem in two dimensions:experiments and theory[J]. Journal of Ship Research, 1992, 36(4):299-316.
|
[20] |
武文华, 于佰杰, 许宁, 等. 海冰与锥体抗冰结构动力作用的数值模拟[J]. 工程力学, 2008, 25(11):192-196. Wu Wenhua, Yu Baijie, Xu Ning, et al. Numerical simulation of dynamic ice action on conical structure[J]. Engineering Mechanics, 2008, 25(11):192-196. (in Chinese)
|
[21] |
王刚, 武文华, 岳前进. 锥体接触宽度对冰排弯曲破坏模式影响的有限元分析[J]. 工程力学, 2008, 25(1):235-240. Wang Gang, Wu Wenhua, Yue Qianjin. FEM analysis on ice-bending failure mode with width effect of ice-cone interaction[J]. Engineering Mechanics, 2008, 25(1):235-240. (in Chinese)
|
[22] |
Di S, Xue Y, Wang Q, et al. Discrete element simulation of ice loads on narrow conical structures[J]. Ocean Engineering, 2017, 146(12):282-297.
|
[23] |
Riska K, Leiviskä T, Nyman T, et al. Ice performance of the Swedish multi-purpose icebreaker Tor Viking Ⅱ[C]//16st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 2001:849-866.
|