水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性

李海涛, 张振华, 牟金磊, 刘丽滨

李海涛, 张振华, 牟金磊, 刘丽滨. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性[J]. 工程力学, 2019, 36(1): 238-247,256. DOI: 10.6052/j.issn.1000-4750.2017.10.0779
引用本文: 李海涛, 张振华, 牟金磊, 刘丽滨. 水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性[J]. 工程力学, 2019, 36(1): 238-247,256. DOI: 10.6052/j.issn.1000-4750.2017.10.0779
LI Hai-tao, ZHANG Zhen-hua, MOU Jin-lei, LIU Li-bin. HYDRO-ELASTIC-PLASTIC DYNAMIC RESPONSE OF A SHIP HULL GIRDER SUBJECTED TO UNDERWATER EXPLOSION: A SIMPLIFIED THEORETICAL MODEL[J]. Engineering Mechanics, 2019, 36(1): 238-247,256. DOI: 10.6052/j.issn.1000-4750.2017.10.0779
Citation: LI Hai-tao, ZHANG Zhen-hua, MOU Jin-lei, LIU Li-bin. HYDRO-ELASTIC-PLASTIC DYNAMIC RESPONSE OF A SHIP HULL GIRDER SUBJECTED TO UNDERWATER EXPLOSION: A SIMPLIFIED THEORETICAL MODEL[J]. Engineering Mechanics, 2019, 36(1): 238-247,256. DOI: 10.6052/j.issn.1000-4750.2017.10.0779

水下爆炸作用下弹塑性船体梁整体运动模型及损伤特性

基金项目: 国家自然科学基金项目(51679244)
详细信息
    作者简介:

    张振华(1976-),男,湖北武汉人,副教授,博士后,从事船舶抗爆抗冲击防护技术研究(E-mail:2zsz@163.com);牟金磊(1980-),男,山东寿光人,讲师,博士,从事船舶抗爆抗冲击技术研究(E-mail:mjl1007@163.com);刘丽滨(1993-),男,山东滨州人,硕士生,从事船舶抗爆抗冲击实验技术研究(E-mail:hit_llbin@163.com).

    通讯作者:

    李海涛(1979-),男,湖北武汉人,副教授,博士,从事船舶抗爆抗冲击理论及实验技术研究(E-mail:navy_lht@163.com).

  • 中图分类号: O383;U661.72

HYDRO-ELASTIC-PLASTIC DYNAMIC RESPONSE OF A SHIP HULL GIRDER SUBJECTED TO UNDERWATER EXPLOSION: A SIMPLIFIED THEORETICAL MODEL

  • 摘要: 针对水下爆炸作用下舰船整体运动响应的理论预报问题,将船体结构简化为等截面直梁,以炸药在船体梁中部正下方爆炸工况为研究对象,将水下爆炸载荷压力曲线划分为5个典型阶段,建立了冲击波和气泡联合作用下船体梁整体运动的简化理论模型,分别研究了船体梁全弹性和弹塑性运动模式,特别分析了梁进入塑性运动后反复加载、卸载的响应过程,最后结合船体梁模型水下爆炸实验结果对该理论方法进行了验证,同时对比分析了爆距、梁长等参数变化对梁整体运动响应的一般影响特性。研究表明:所建立的水下爆炸作用下船体梁整体运动响应理论模型能够反映船体梁发生整体弹性和塑性运动时的响应特征;当水下爆炸近距发生于梁中部正下方,且爆炸气泡第一次脉动频率与梁一阶湿频率相近时,船体梁更容易发生整体中垂损伤。
    Abstract: A simplified theoretical model to predict the dynamic response of a warship's hull girder subjected to underwater explosion is investigated and presented. In the model, the hull girder is simplified as a uniform ship-like beam and TNT charge is located under the mid-span of the beam. The pressure curve of explosion load is divided into five stages, and the pressure distribution functions are deduced from the wall-pressure characteristics of shock waves and following bubble oscillations. The characteristics of the beam's pure elastic and elastic-plastic motion are analyzed, including the process of loading and unloading repeatedly in plastic deformation, and the influence of variable parameters, such as stand-off and beam's length. Finally, a ship-like beam was used in the experiment to verify the method. The results show that the experimental data basically agrees with those of theoretical analysis. The theoretical method can reasonably capture the essential motion features, such as response cycle and deformation amplitude. When the underwater non-contact explosion occurs closely below the hull girder's center, and the first pulse frequency of the bubble is equivalent to the first-order natural wet frequency of the girder, sagging damage will occur easily.
  • [1] Li Yujie, Pan Jianqiang, Li Guohua, et al. Experimental study of ship whipping induced by underwater explosion bubble[J]. Journal of Ship Mechanics, 2001, 5(6):75-83.
    [2] Vernon, T A. Whipping response of rhip hulls from underwater explosion bubble loading[R]. AD-A178096, 1986.
    [3] Stettler J W. Damping mechanisms and their effects on the whipping response of a submerged submarine subjected to an underwater explosion[R]. Lehigh University, 1983.
    [4] Chen Y, Tong Z P, Hua H X, et al. Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion[J]. International Journal of Impact Engineering, 2009, 36:318-328.
    [5] Zong Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. Journal of Fluids and Structures, 2005, 20:359-372.
    [6] Zhang N, Zong Z. Hydro-elastic-plastic dynamic response of a ship hull girder subjected to an underwater bubble[J]. Marine Structures, 2012, 29:177-197.
    [7] Zhang A M, Yao X L, Li J. The interaction of an underwater explosion bubble and an elastic-plastic structure[J]. Applied Ocean Research, 2008, 30(3):159-171.
    [8] Zong Z, Zhao Y J, Li H T. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock. Marine Structures, 2013, 31:24-43.
    [9] Wang H, Zhu X, Cheng Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse[J]. Marine Structures, 2014, 39:90-117.
    [10] 李海涛, 朱石坚, 刁爱民, 等. 水下爆炸气泡作用下梁中垂损伤及流场变化特性. 高压物理学报, 2012, 26(5):494-500. Li Haitao, Zhu Shijian, Diao Aimin, et al. Characteristics of flow-field an sagging damage of fee-free beam subjected to underwater explosion bubbles[J]. Chinese Journal of High Pressure Physics, 2012, 26(5):494-500. (in Chinese)
    [11] 李海涛, 朱锡, 赵小龙, 等. 箱形梁在水下近距非接触爆炸作用下的整体毁伤研究. 振动与冲击, 2010, 29(3):158-161. Li Haitao, Zhu Xi, Zhao Xiaolong, et al. Study on damage mode of box-like beam as a whole subjected to underwater non-contact explosion located closely[J]. Journal of vibration and shock, 2010, 29(3):158-161. (in Chinese)
    [12] Zhang Z H, Wang Y X, Zhao H F, et al. An experimental study on the dynamic response of a hull girder subjected to near field underwater explosion[J]. Marine Structures, 2015, 44:43-60.
    [13] Yu T X, Yang J L, Reid S R. Dynamic behavior of elastic-plastic free-free beams subjected to impulsive loading[J]. International Journal of Solids Structures, 1996, 33(18):2659-2680.
    [14] 张振华, 汪玉. 近距水爆冲击波对船体梁总体毁伤的"刀锋效应". 中国科学:物理学力学天文学, 2015, 48(5):43-60. Zhang, Zhenhua, Wang Yu. "Blade effect" on the overall damage of hull girder caused by near field UNDEX shock wave[J]. SCIEN TIA SINICA Physica, Mechanica& Astronomica, 2015, 48(5):43-60. (in Chinese)
    [15] 李海涛, 朱锡, 张振华. 水下爆炸球面冲击波作用下船体梁的刚塑性动响应特性. 工程力学, 2010, 27(10):202-207. Li Haitao, Zhu Xi, Zhang Zhenhua. Dynamic rigid-plastic response of ship-like beam subjected to underwater spherical shockwaves[J]. Engineering Mechanics, 2010, 27(10):202-207. (in Chinese)
    [16] Zamyshlyayev B V. Dynamic loads in underwater explosion[R]. Washington D C:Naval Intelligence Support Center, 1973.
    [17] Zhang Zhenhua, Wang Yu, Zhang Lijun, etal. Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion[J]. Applied Mathematics and Mechanics, 2011, 32(12):1491-1504.
    [18] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究[J]. 工程力学, 2014, 31(8):46-52. Li Xiaojie, Zhang Chengjiao, Wang Xiaohong, et al. Numerical study on the effect of equations of state of water on underwater explosions[J]. Engineering Mechanics, 2014, 31(8):46-52. (in Chinese)
    [19] 刁爱民, 李海涛. 水下爆炸作用下船体梁整体运动简化理论模型[J]. 华中科技大学学报(自然科学版), 2016, 44(6):63-67. Diao Aimin, Li Haitao. Simplified theoretical model for bulk movement of hull girder subjected to underwater explosion[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(6):63-67. (in Chinese)
    [20] 刘巨斌, 李海涛, 王俊森. 水面无限平板下方球状爆炸气泡流场压力特性. 华中科技大学学报(自然科学版), 2013, 41(4):119-122. Liu Jubin, Li Haitao, Wang Junsen. Characteristics of flow-field pressure of spherical explosion bubbles under an infinite plate floating on water[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(4):119-122. (in Chinese)
    [21] 刘巨斌, 李海涛. 水面平板下方非球状爆炸气泡运动数值模拟[J]. 海军工程大学学报, 2015, 27(2):6-9. Liu Jubin, Li Haitao. Numerical simulation of non-spherical explosion bubble motion below plate floating on water[J]. Journal of Naval University of Engineering, 2015, 27(2):6-9. (in Chinese)
    [22] Hsu C Y, Liang C C, Nguyen A T, et al. A numerical study on the underwater explosion bubble pulsation and the collapse process[J]. Ocean Engineering, 2014, 81:29-38.
  • 期刊类型引用(11)

    1. 周云. 空爆载荷下钛蜂窝夹芯板的变形和破坏. 自动化应用. 2024(10): 212-214 . 百度学术
    2. 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 . 百度学术
    3. 赖志超,邓硕,秦健,迟卉,孟祥尧,文彦博,黄瑞源. 不同类型炸药近场水下爆炸下固支方板动态响应研究. 工程力学. 2024(11): 179-194 . 本站查看
    4. 周平,孙锋山,谈敦铭,刘保军. 空爆载荷下不同芯材夹层结构的变形和破坏. 机电产品开发与创新. 2024(05): 93-96 . 百度学术
    5. 吴林杰,刘文思,李海涛,胡年明. 水下近场爆炸下船体梁鞭状运动数值模拟. 舰船科学技术. 2023(02): 8-12 . 百度学术
    6. 罗刚,张玉龙,任毅,郭正儒,潘少康. 水下爆炸-移动作用下悬浮隧道管体响应. 哈尔滨工业大学学报. 2022(03): 85-94 . 百度学术
    7. 张弛,李海涛,梅志远,李杰兵,郑欣颖. 典型结构参数对船体梁抗水下爆炸特性的影响. 高压物理学报. 2022(03): 138-150 . 百度学术
    8. 刘文思,田恒斗,程素秋. 基于鱼雷爆炸毁伤考核的靶标仿真设计. 中国科学:物理学 力学 天文学. 2021(12): 85-93 . 百度学术
    9. 秦爽,赵金昌,卞德存. 水中高压脉冲放电致裂岩体实验研究. 爆破. 2020(01): 94-101 . 百度学术
    10. 谷鸿平,黄河,孟献策,张立建,畅博,吕永柱,张舵. 舰载导弹在水下爆炸作用下的冲击环境数值仿真. 舰船科学技术. 2020(21): 35-39 . 百度学术
    11. 李元龙,王金相,林尚剑,唐奎,陈兴旺,黄瑞源. 水下爆炸作用下固支多层片组结构的塑性毁伤研究. 工程力学. 2019(08): 248-256 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  514
  • HTML全文浏览量:  52
  • PDF下载量:  96
  • 被引次数: 14
出版历程
  • 收稿日期:  2017-10-15
  • 修回日期:  2018-03-05
  • 刊出日期:  2019-01-28

目录

    /

    返回文章
    返回