收缩-扩张喷管内气固两相流运动规律研究

李平, 肖良华, 何卫锋, 侯晓松

李平, 肖良华, 何卫锋, 侯晓松. 收缩-扩张喷管内气固两相流运动规律研究[J]. 工程力学, 2018, 35(12): 240-247. DOI: 10.6052/j.issn.1000-4750.2017.10.0754
引用本文: 李平, 肖良华, 何卫锋, 侯晓松. 收缩-扩张喷管内气固两相流运动规律研究[J]. 工程力学, 2018, 35(12): 240-247. DOI: 10.6052/j.issn.1000-4750.2017.10.0754
LI Ping, XIAO Liang-hua, HE Wei-feng, HOU Xiao-song. RESEARCH ON MOVEMENT LAW OF GAS-SOLID TWO-PHASE FLOW IN CONVERGENT-DIVERGENT NOZZLE[J]. Engineering Mechanics, 2018, 35(12): 240-247. DOI: 10.6052/j.issn.1000-4750.2017.10.0754
Citation: LI Ping, XIAO Liang-hua, HE Wei-feng, HOU Xiao-song. RESEARCH ON MOVEMENT LAW OF GAS-SOLID TWO-PHASE FLOW IN CONVERGENT-DIVERGENT NOZZLE[J]. Engineering Mechanics, 2018, 35(12): 240-247. DOI: 10.6052/j.issn.1000-4750.2017.10.0754

收缩-扩张喷管内气固两相流运动规律研究

基金项目: 国家自然科学基金项目(11602302);陕西省科技统筹创新工程计划项目(2015KTCQ01-72)
详细信息
    作者简介:

    李平(1992-),男,辽宁人,硕士,主要从事直升机发动机抗砂尘冲蚀性能研究(E-mail:lptianxia33@163.com);肖良华(1985-),男,湖南人,讲师,博士,主要从事空气动力学研究(E-mail:xlh0302@126.com);侯晓松(1986-),男,河北人,工程师,硕士,主要从事飞机总体设计研究(houxs04@163.com).

    通讯作者:

    何卫锋(1977-),男,湖南人,教授,博士,博导,主要从事结构强度与可靠性研究(E-mail:hehe_coco@163.com).

  • 中图分类号: V211.3

RESEARCH ON MOVEMENT LAW OF GAS-SOLID TWO-PHASE FLOW IN CONVERGENT-DIVERGENT NOZZLE

  • 摘要: 航空飞行器在简易跑道起飞或降落时,砂尘颗粒不可避免被发动机吸入,并与高速旋转的发动机叶片发生冲撞,导致叶片冲蚀损伤,显著降低发动机使用寿命,严重威胁飞行器的安全。试验中一般采用气动喷砂的方法将砂尘粒子加速至一定速度,并冲击试验件,以模拟发动机叶片的实际冲蚀过程。喷管是实现粒子加速的关键部件,该文通过试验和数值模拟对不同入口总压条件下收缩-扩张喷管加速砂尘颗粒的情况进行研究。实验中,通过压力传感器和双盘测速分别测量了喷管内壁静压和喷管出口处的颗粒速度;数值模拟中,采用实验入口总压条件,模拟了稀疏砂尘颗粒在喷管中的气固两相流运动,并详细分析了气流运动和颗粒的受力及加速情况。研究表明:数值模拟的气流压力分布及颗粒速度均与实验结果吻合;喷嘴出口处粒子速度随入口总压的增大而增大,且总压为0.23 MPa~0.4 MPa范围时的增长速率较大,而总压为0.4 MPa~0.56 MPa范围时的增长速率较小;粒子的加速主要发生在喷管的扩张段。
    Abstract: Sand and dust particles will be inhaled by engine inevitably when the airplane takes off or lands on gravel ground. The particles collide with the engine blades. As a result the blades are eroded seriously, which shortens engine service time or even threatens the aircraft safety. To imitate the erosion process in laboratory, the blades or test specimens are fixed and impacted by high speed particles, which are accelerated by the pneumatic equipment. The air with high total pressure can expand to sonic or supersonic speed in a nozzle, and can be used to accelerate particles. So the nozzle is the key component to realize particle acceleration. The accelerations of air flow and sparse particles in a convergent-divergent nozzle with different total pressure were studied by experiments and numerical simulations. In the experiment, the wall pressure and particles velocity were measured by pressure sensor and Double Disc Method system, respectively. In the simulation, the gas-solid two phase flow was simulated. The results show that the pressure and particle velocity of simulation agrees well with the experimental results. The particle velocity at the nozzle exit increased with the total pressure, while the rate of increase for the total pressure at 0.23 MPa~0.4 MPa is larger than that at 0.4 MPa~0.56 MPa. The particle was accelerated mostly at the divergent part of the nozzle.
  • [1] 谢安琦, 刘道新, 刘明霞, 等. 表面处理对17-4PH不锈钢抗固体粒子冲蚀性能的影响[J]. 航空材料学报, 2015, 35(2):43-53. Xie Anqi, Liu Daoxin, Liu Mingxia, et al. Effects of surface treatment on solid particle erosion resistance of 17-4PH Stainless Steel[J]. Journal of Aeronautical Materials, 2015, 35(2):43-53. (in Chinese)
    [2] 何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6):1733-1743. He Guangyu, Li Yinghong, Cai Yan, et al. Review of key issues on coating against sand erosion of aero-engine Compressor Blade[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1733-1743. (in Chinese)
    [3] Johnson B, Leishman J G, Sydney A J. Investigation of sediment entrainment using dual-phase, high-speed particle image velocimetry[J]. Journal of the American Helicopter Society, 2010, 55(4):1-16.
    [4] Sydney A J, Leishman J G. Time-resolved measurements of rotor-induced particle flows produced by a hovering rotor[J]. Journal of the American Helicopter Society, 2014, 59(2):1-16.
    [5] Stevenson A N J, Hutchings I M. Scaling laws for particle velocity in the gas-blast erosion Test[J]. Wear, 1995, 181(95):56-62.
    [6] 王研艳, 翁春生. 非定常流动中塞式收敛扩张喷管的研究[J]. 工程力学, 2014, 31(12):223-227. Wang Yanyan, Weng Chunsheng. Analysis of plug-inconvergent-divergent nozzle in unsteady flow[J]. Engineering Mechanics, 2014, 31(12):223-227. (in Chinese)
    [7] 王金东, 吕志利, 刘树林, 等. 基于FLUENT的气动喷砂两相流场分析[J]. 科学技术与工程, 2009, 9(17):5113-5115. Wang Jindong, Lü Zhili, Liu Shulin, et al. FLUENT based on the pneumatic blasting two-phase flow field analysis[J]. Science Technology and Engineering, 2009, 9(17):5113-5115. (in Chinese)
    [8] 章利特, 徐廷相. 缩放喷管内的气固两相流动和缩放喷管长度的研究[J]. 西安交通大学学报, 2004, 38(7):702-704. Zhang Lite, Xu Tingxiang. Study on gas-solid two-phase flow in laval nozzle and laval nozzle length[J]. Journal of Xi'an Jiaotong University, 2004, 38(7):702-704. (in Chinese)
    [9] 孙建国. 基于缩放喷管的超声速气固两相流动特性数值研究[D]. 杭州:浙江理工大学, 2012:13-14. Sun Jianguo. A study on gas-solid two-phase flow in convergent-divergent nozzle.[D]. Hangzhou:Zhejiang Sci-Tech University, 2012:13-14. (in Chinese)
    [10] 张腾飞, 邓松圣, 陈晓晨, 等. 后混磨料射流颗粒运动仿真和实验分析[J]. 重庆理工大学学报(自然科学), 2015, 29(2):57-60. Zhang Tengfei, Deng Songsheng, Chen Xiaochen, et al. Simulation and analysis of post-mixed abrasive water jet particle trajectory[J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(2):57-60. (in Chinese)
    [11] 李平, 肖良华, 何卫锋, 等. 收缩-扩张喷管中稀疏颗粒加速运动及喉道优化[J]. 空军工程大学学报(自然科学版), 2017, 18(5):7-12. Li Ping, Xiao Lianghua, He Weifeng, et al. Particles motion and throat optimization for accelerating sparse particles in supersonic convergent-divergent nozzle[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(5):7-12. (in Chinese)
    [12] Crowe C, Sommerfeld M, Schwarzkopf J, et al. Multiphase flows with droplets and particles[M]. Boca Raton:CRC Press, 1998:17-35.
    [13] 边飞龙, 朱有利, 杜晓坤, 等. 基于CFD方法的气动喷丸两相流场特性研究[J]. 计算机仿真, 2015, 32(1):264-269. Bian Feilong, Zhu Youli, Du Xiaokun, et al. Research on performance of two-phase flow field of the pneumatic shot peening based on CFD method[J]. Computer Simulation, 2015, 32(1):264-269. (in Chinese)
    [14] 周晅毅, 谭敏海, 晏克勤, 等. 风致积雪重分布的拉格朗日方法与现场实测研究[J]. 工程力学, 2017, 34(2):21-27. Zhou Xuanyi, Tan Minhai, Yan Keqin, et al. Lagrangian method modeling and field measurement on snowrift[J]. Engineering Mechanics, 2017, 34(2):21-27. (in Chinese)
    [15] 周晅毅, 刘长卿, 顾明, 等. 拉格朗日方法在风雪运动模拟中的应用[J]. 工程力学, 2015, 32(1):36-42. Zhou Xuanyi, Liu Changqing, Gu Ming, et al. Application of lagrangian method to snowrift model[J]. Engineering Mechanics, 2015, 32(1):36-42. (in Chinese)
    [16] Deen N G, Annaland M V S, Hoef M A V D, et al. Review of discrete particle modeling of fluidized beds[J]. Chemical Engineering Science, 2007, 62(1/2):28-44.
    [17] Zhang Z, Cheng X W, Zheng Y G, et al. Numerical simulation of erosion-corrosion in the liquid solid twophase flow[J]. Chinese Journal of Chemical Engineering, 2000, 8(4):347-355.
    [18] 丁英涛, 姚朝辉, 何枫. 微喷管内气体流动特性研究[J]. 工程力学, 2004, 21(3):190-195. Ding Yingtao, Yao Zhaohui, He Feng. Gas flow characte-ristics in micro-nozzle[J]. Engineering Mechanics, 2004, 21(3):190-195. (in Chinese)
    [19] Salvador F J, Martinez-lopez J, Caballer M, et al. Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods[J]. Energy Conversion & Management, 2013, 66(3):246-256.
    [20] 汪琦. 气固流化床两相流动的CFD模型研究和实验验证[D]. 武汉:华中科技大学, 2012:8-15. Wang Qi. Comparative analysis of CFD models of gas-solid fluidized bed and experimental verification[D]. Wuhan:Huazhong University of Science & Technology, 2012:8-15. (in Chinese)
    [21] Clift R, Grace J R, Weber M E. Bubbles, drops, and particles[M]. Mineola:Dover Publications, 1978:330-347.
  • 期刊类型引用(8)

    1. 陈良兵,廖紫默,刘难生,万振华. 喷管两相湍流数值模拟及湍流模型性能评估. 固体火箭技术. 2024(01): 24-34 . 百度学术
    2. 熊俊琦,胡恒瑜,田芮澎,陈良兵,黄海波,丁淼,王德鑫. 固体火箭发动机气-固两相近壁湍流特性大涡模拟研究. 固体火箭技术. 2024(04): 519-528 . 百度学术
    3. 李泓瑾,李军伟,谢侃,李想,杨正,王宁飞. 两相流对固体火箭发动机塞式喷管性能的影响. 航空学报. 2023(16): 27-38 . 百度学术
    4. 颜乐,张轲,薛士枚,张弛,张宇辉. 船体外板大拼接焊缝高效无尘喷砂除锈器. 造船技术. 2022(01): 57-63 . 百度学术
    5. 张弛,张宇辉,秦浩然,陈荣涛,张轲. 高效无尘喷砂除锈器气固两相流运动特性分析. 船舶工程. 2022(05): 155-160+177 . 百度学术
    6. 孙卫,施红辉. 干粉粒径对灭火器超声速气固两相流影响的数值模拟. 浙江理工大学学报(自然科学版). 2021(03): 365-372 . 百度学术
    7. 刘天程,章利特,冯子龙,孙梦郁. 超声速干粉灭火喷管气固两相射流特性的数值分析. 浙江理工大学学报(自然科学版). 2021(05): 612-623 . 百度学术
    8. 汪建新,王飞,任明明. 磁选机分选腔的形状对气固两相流动过程的影响. 现代电子技术. 2020(15): 159-161+167 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  466
  • HTML全文浏览量:  43
  • PDF下载量:  55
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2018-03-01
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回