预应力钢绞线锈胀及混凝土开裂预测

王磊, 戴理朝, 易驹, 张旭辉, 张建仁

王磊, 戴理朝, 易驹, 张旭辉, 张建仁. 预应力钢绞线锈胀及混凝土开裂预测[J]. 工程力学, 2018, 35(12): 54-62. DOI: 10.6052/j.issn.1000-4750.2017.08.0658
引用本文: 王磊, 戴理朝, 易驹, 张旭辉, 张建仁. 预应力钢绞线锈胀及混凝土开裂预测[J]. 工程力学, 2018, 35(12): 54-62. DOI: 10.6052/j.issn.1000-4750.2017.08.0658
WANG Lei, DAI Li-zhao, YI Ju, ZHANG Xu-hui, ZHANG Jian-ren. EXPANSION OF PRESTRESSED STRAND CORROSION PRODUCTS AND CONCRETE CRACKING PREDICTION[J]. Engineering Mechanics, 2018, 35(12): 54-62. DOI: 10.6052/j.issn.1000-4750.2017.08.0658
Citation: WANG Lei, DAI Li-zhao, YI Ju, ZHANG Xu-hui, ZHANG Jian-ren. EXPANSION OF PRESTRESSED STRAND CORROSION PRODUCTS AND CONCRETE CRACKING PREDICTION[J]. Engineering Mechanics, 2018, 35(12): 54-62. DOI: 10.6052/j.issn.1000-4750.2017.08.0658

预应力钢绞线锈胀及混凝土开裂预测

基金项目: 国家重点基础研究发展规划(973计划)项目(2015CB057705);国家自然科学基金项目(51678069,51708477);中国博士后科学基金项目(2017M620350)
详细信息
    作者简介:

    王磊(1979-),男,吉林人,教授,博士,主要从事桥梁耐久性与可靠度研究(E-mail:leiwlei@hotmail.com);易驹(1990-),男,湖南人,博士生,主要从事桥梁耐久性研究(E-mail:542265065@qq.com);张旭辉(1987-),男,湖南人,讲师,博士,主要从事桥梁耐久性研究(E-mail:xuhui.zhang@qq.com);张建仁(1958-),男,湖南人,教授,博士,主要从事桥梁耐久性与可靠度研究(E-mail:jianrenz@hotmail.com).

    通讯作者:

    戴理朝(1989-),男,湖南人,博士生,主要从事桥梁耐久性研究(E-mail:lizhaod@hotmail.com).

  • 中图分类号: TU378.1

EXPANSION OF PRESTRESSED STRAND CORROSION PRODUCTS AND CONCRETE CRACKING PREDICTION

  • 摘要: 针对钢绞线锈蚀导致混凝土开裂现象,开展了不同应力状态下混凝土的锈胀开裂试验,基于红外和热重分析研究了预应力钢绞线锈蚀产物的膨胀率,分析了预应力对保护层临界开裂时间和裂缝宽度的影响,综合考虑预应力、铁锈膨胀率和混凝土开裂损伤等因素,建立了开裂初始和发展全过程的锈胀裂缝预测模型,并通过试验结果进行了验证。结果表明:预应力会加速混凝土的锈胀开裂,在钢绞线抗拉强度75%的预应力水平下,保护层初始开裂时间降低了22%,裂缝扩展速率增加了9%;建立的模型具有较好的精度,可以合理地预测预应力混凝土的锈胀开裂。
    Abstract: Strand corrosion would induce the cracking of prestressed concrete. An experimental study is conducted to investigate the corrosion-induced cracking of concrete under various prestress. The expansion ratio of prestressed strand corrosion products is studied based on the infrared (IR) spectroscopy and the thermal gravimetry (TG) analysis. The effects of prestress on the critical time of cover cracking and crack widths are discussed. An analytical model is proposed to predict the concrete cracking from corrosion initiation to crack propagation. The model can consider the combined effects of the prestress, rust-expansion ratio and residual strength of cracked concrete. The model was verified by experimental data. The predicted results show that prestress can accelerate the corrosion-induced cracking process. When the prestress is 75% strand tensile strength, the critical time of cover cracking decreases 22% and the crack propagation rate increases 9%. The model can reasonably predict the corrosion-induced cracking of prestressed concrete.
  • [1] Zhang W, Liu X, Gu X. Fatigue behavior of corroded prestressed concrete beams[J]. Construction and Building Materials, 2016, 106:198-208.
    [2] 马亚飞, 王磊, 张建仁. 锈胀钢筋混凝土拱肋承载力试验与模拟[J]. 工程力学, 2017, 34(7):155-161. Ma Yafei, Wang Lei, Zhang Jianren. Experimental and numerical studies on reinforced concrete arch ribs with corrosion-induced cracks[J]. Engineering Mechanics. 2017, 34(7):155-161. (in Chinese)
    [3] 张英姿, 范颖芳, 赵颖华. 混凝土保护层胀裂时刻钢筋锈蚀深度的理论模型[J]. 工程力学, 2010, 27(9):122-127. Zhang Yingzi, Fan Yingfang, Zhao Yinghua. Theoretical model to determine the depth of reinforcement corrosion at concrete cover cracking[J]. Engineering Mechanics, 2010, 27(9):122-127. (in Chinese)
    [4] 王治, 金贤玉, 付传清, 等. 基于损伤的钢筋混凝土锈胀开裂模型[J]. 建筑结构学报, 2014, 35(9):115-122. Wang Zhi, Jin Xianyu, Fu Chuanqing, et al. Concrete cracking model for rust expansion based on damage[J]. Journal of Building Structures, 2014, 35(9):115-122. (in Chinese)
    [5] Cao C, Cheung M M S, Chan B Y B. Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate[J]. Corrosion Science, 2013, 69:97-109.
    [6] Liu Y. Modeling the time-to-corrosion cracking in chloride contaminated concrete structures[J]. ACI Material Journal, 1998, 95(6):675-681.
    [7] Zhao Y, Ren H, Dai H, et al. Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis[J]. Corrosion Science, 2011, 53(5):1646-1658.
    [8] Li F, Yuan Y, Li C Q. Corrosion propagation of prestressing steel strands in concrete subject to chloride attack[J]. Construction and Building Materials, 2011, 25(10):3878-3885.
    [9] 王晓舟, 金伟良, 延永东. 混凝土结构锈胀开裂预测的路径概率模型[J]. 浙江大学学报(工学版), 2010, 44(6):1191-1196. Wang Xiaozhou, Jin Weiliang, Yan Yongdong. Path probability model of corrosion-crack assessment for existing reinforced concrete structures[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(6):1191-1196. (in Chinese)
    [10] 吴灵杰, 寇新建, 周拥军, 等. 既有钢筋混凝土码头保护层锈胀开裂计算时长对比[J]. 哈尔滨工业大学学报, 2016, 48(12):51-55. Wu Lingjie, Kou Xinjian, Zhou Yongjun, et al. Propagation assessment of existing concrete dock based on concrete cover corrosion-crack[J]. Journal of Harbin Institute of Technology, 2016, 48(12):51-55. (in Chinese)
    [11] Khan I, François R, Castel A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams[J]. Cement and Concrete Research, 2014, 56:84-96.
    [12] Bažant Z. Physical model for steel corrosion in concrete sea structures-theory[J]. Journal of the Structural Division, 1979, 105(6):1155-1166.
    [13] 毛江鸿, 陈佳芸, 崔磊, 等. 氯盐侵蚀钢筋混凝土锈胀开裂监测及预测方法[J]. 建筑材料学报, 2016, 19(1):59-64. Mao Jianghong, Chen Jiayun, Cui Lei, et al. Monitoring and predicting method for reinforced concrete expansion and cracking induced by chloride erosion[J]. Journal of Building Materials, 2016, 19(1):59-64. (in Chinese)
    [14] Michel A, Pease B J, Peterová A, et al. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials:Experimental investigations and numerical simulations[J]. Cement and Concrete Composites, 2014, 47:75-86.
    [15] Dai L, Wang L, Zhang J, et al. A global model for corrosion-induced cracking in prestressed concrete structures[J]. Engineering Failure Analysis, 2016, 62:263-275.
    [16] 李文钊, 陈晓楠, 王波, 等. 模拟海岛环境中弹药元件锈蚀产物红外光谱分析[J]. 腐蚀与防护[J]. 2013, 34(3):236-238. Li Wenzhao, Chen Xiaonan, Wang Bo, et al. IR analysis of corrosion products on amunition elements in simulate island environments. Corrosion and Protection[J]. 2013, 34(3):236-238. (in Chinese)
    [17] Raman A, Kuban B, Razvan A. The application of IR spectroscopy to the study of atmospheric rust systems:I standard spectra and illustrative applications to identify rust phases in natural corrosion[J]. Corrosion Science, 1991, 32(12):1295-1306.
    [18] Jaffer S J, Hansson C M. Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions[J]. Cement and Concrete Research, 2009, 39(2):116-125.
    [19] Zhang R, Castel A, François R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process[J]. Cement and Concrete Research, 2010, 40(3):415-425.
    [20] Pantazopoulou S J, Papoulia K D. Modeling cover-cracking due to reinforcement corrosion in structures[J]. Journal of Engineering Mechanics, 2001, 127(127):342-351.
    [21] Tasuji M E, Slate F O, Nilson A H. Stress-strain response and fracture of concrete in biaxial loading[J]. Journal of the American Concrete Institute, 1978, 75(7):306-312.
    [22] Li C Q, Yang S T. Prediction of concrete crack width under combined reinforcement corrosion and applied load[J]. Journal of Engineering Mechanics, 2011, 137(11):722-731.
计量
  • 文章访问数:  390
  • HTML全文浏览量:  30
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 修回日期:  2017-11-28
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回