夏威夷ALEUTIAN海啸的NEOWAVES数值模拟

翟金金, 董胜

翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364. DOI: 10.6052/j.issn.1000-4750.2017.06.S053
引用本文: 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364. DOI: 10.6052/j.issn.1000-4750.2017.06.S053
ZHAI Jin-jin, DONG Sheng. Simulation of ALEUTIAN tsunami by NEOWAVES model[J]. Engineering Mechanics, 2018, 35(S1): 359-364. DOI: 10.6052/j.issn.1000-4750.2017.06.S053
Citation: ZHAI Jin-jin, DONG Sheng. Simulation of ALEUTIAN tsunami by NEOWAVES model[J]. Engineering Mechanics, 2018, 35(S1): 359-364. DOI: 10.6052/j.issn.1000-4750.2017.06.S053

夏威夷ALEUTIAN海啸的NEOWAVES数值模拟

基金项目: 国家自然科学基金委员会-山东省人民政府联合基金项目(U1706226);国家自然科学基金项目(51479183)
详细信息
    作者简介:

    翟金金(1990-),女,河南商丘人,博士生,主要从事海岸工程及其与海洋环境的相互作用研究(E-mail:zhaijinjin.good@163.com).

    通讯作者:

    董胜(1968-),男,山东青岛人,教授,博士,博导,从事海洋工程环境及其与结构相互作用研究(E-mail:dongsh@ouc.edu.cn).

  • 中图分类号: P731.25

Simulation of ALEUTIAN tsunami by NEOWAVES model

  • 摘要: 夏威夷群岛因其特殊的地理位置及周围海底地形,长期遭受太平洋地震带和近岸地震带产生的海啸影响,如何准确地确定夏威夷群岛沿岸的海啸爬高对海洋结构设计具有重大意义。基于非线性浅水方程建立的NEOWAVES模型包含非线性静水压力项和垂向动量方程,用于描述海底的动态变形和弱频散波的传播过程,它能够模拟海啸的整个生命过程,包括产生、传播、爬高和淹没。以对夏威夷地区影响比较严重的1946年Aleutian历史海啸为例,采用NEOWAVES模型模拟其产生、传播以及在夏威夷欧胡岛沿岸地带的爬高。计算结果表明,NEOWAVES模型计算得到的欧胡岛沿岸(北部、西部和南部)的爬高与历史记录的爬高数据接近,验证了NEOWAVES模型的合理性和可靠性,同时也为夏威夷地区海洋结构物的设计提供合理的参考意见。
    Abstract: Hawaiian Islands have long been impacted by tsunamis caused by the Pacific seismic zone and near-field seismic zone, largely attributed to its special geographical location and its offshore geography. How to accurately calculate the tsunami runup along the coast of Hawaiian Islands is of great significance on the design of marine structures. Based on the nonlinear shallow water equation, NEOWAVES is a shock-capturing, dispersive wave model for tsunami generation, basin-wide evolution, and run-up. It utilizes non-hydrostatic pressure and vertical velocity terms to describe dispersion and time-varying seafloor deformation. In this study, the NEOWAVES model is applied to the simulation of generation, propagation and runup of the 1946a Aleutian historical tsunami at Oahu Island. The result shows that the tsunami runup data at Oahu Island (North, West and South) calculated by NEOWAES model are similar to the historical recorded runup data, which proves that the NEOWAVES is rational and reliable to simulate tsunami, and offers reasonable reference on design of marine structure.
  • [1] Dawson A G, Stewart I. Tsunami deposits in the geo-logical record[J]. Sedimentary Geology, 2007, 200(3/4):166-183.
    [2] 于福江, 原野, 赵联大, 等. 2010年2月27日智利8.8级地震海啸对我国影响分析[J]. 科学通报, 2011, 56(3):239-246. Yu Fujiang, Yuan Ye, Zhao Lianda, et al. Evaluation of potential hazards from teletsunami in China:Tidal observation of a teletsunami generated by the Chile 8.8 Mw earthquake. Chinese Sci Bull, 2011, 56(3):239-246. (in Chinese)
    [3] Ammon C J, Ji C, Thio H K, et al. Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308(5725):1133-1139.
    [4] 王培涛, 于福江, 原野, 等. 海底地震有限断层破裂模型对近场海啸数值预报的影响[J]. 地球物理学报, 2016, 59(3):1030-1045. Wang Peitao, Yu Fujiang, Yuan Ye, et al. Effects of finite fault rupture models of submarine earthquake on numerical forecasting of near-field tsunami[J]. Chinese Journal of Geophysics, 2016, 59(3):1030-1045. (in Chinese)
    [5] Liu P L F, Cho Y S, Yoon S B, et al. Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii[M]//Tsuchiya Y, Shuto N, eds Tsunami:Progress in Prediction, Disaster Prevention and Warning. Advances in Natural & Technological Hazards Research, 1995, 4:99-115.
    [6] Wang X M, Liu P L F. Numerical Simulations of the 2004 Indian ocean tsunami-coastal effects[J]. Journal of Earthquake & Tsunami, 2007, 1(3):273-297.
    [7] Titov V V, Synolakis C E. Modeling of Breaking and Nonbreaking Long-Wave Evolution and Runup Using VTCS-2[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1995, 121(6):308-317.
    [8] Titov V V, Gonza'lez F I. Implementation and testing of the method of splitting tsunami (MOST) model[R]. NOAA Seattle, Washington, USA:U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories (ERL PMEL-112), NOAA/Pacific Marine environmental Laboratory, 1997:1-11.
    [9] Tang L, Titov V V, Bernard E N, et al. Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements[J]. Journal of Geophysical Research Oceans, 2012, 117(C8):72-82.
    [10] Imamura F. Review of tsunami simulation with a finite difference method[M]//Liu P L F, eds Long-wave Runup Models. Friday Harbor, USA:World Scientific Publishing, 1995:25-42.
    [11] Shuto N. Numerical simulation of tsunamis - Its present and near future[J]. Natural Hazards, 1991, 4(2/3):171-191.
    [12] Burwell D, Tolkova E, Chawla A. Diffusion and dispersion characterization of a numerical tsunami model[J]. Journal of Shenyang Agricultural University, 2007, 19(5):10-30.
    [13] Grilli S T, Ioualalen M, Asavanant J, et al. Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2007, 133(6):414-428.
    [14] Wei G, Kirby J T. Time-dependent numerical code for extended boussinesq equations[J]. Journal of Waterway Port Coastal & Ocean Engineering, 1995, 121(5):251-261.
    [15] Watts P, Grilli S T, Kirby J T, et al. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model[J]. Natural Hazards & Earth System Science, 2003, 3(5):391-402.
    [16] Watts P, Imamura F, Grilli S T. Comparing model simulations of three benchmark tsunami generation cases[J]. Science of Tsunami Hazards, 2000, 18(2):107-124.
    [17] Grilli S T, Watts P. Modeling of waves generated by a moving submerged body. Applications to underwater landslides[J]. Engineering Analysis with Boundary Elements, 1999, 23(8):645-656.
    [18] Watts P. Tsunami Features of Solid Block Underwater Landslides[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2014, 126(3):144-152.
    [19] Roddis W M K. Community Workshop on Computational Simulation and Visualization Environment for the Network for Earthquake Engineering Simulation (NEES)[R]. Davis, California, USA:University of California, 2003:10-15.
    [20] Yamazaki Y, Cheung K F, Kowalik Z. Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up[J]. International Journal for Numerical Methods in Fluids, 2011, 67(67):2081-2107.
    [21] Yamazaki Y, Kowalik Z, Cheung K F. Depth-integrated, non-hydrostatic model for wave breaking and runup[J]. International Journal for Numerical Methods in Fluids, 2009, 61(5):473-497.
    [22] Cheung K F, And Y B, Yamazaki Y. Surges around the Hawaiian Islands from the 2011 Tohoku Tsunami[J]. Journal of Geophysical Research Oceans, 2013, 118(10):5703-5719.
    [23] Walker D A. Regional tsunami evacuations for the state of hawai'i:a feasibility study based on historical runup[J] data. Science of Tsunami Hazards, 2004, 22(1):3-22.
    [24] Cheung K F. Hawaii Tsunami Mapping Project:Data Sources, Procedures, and Products - Final Report for Hawaii Inundation Maps (FOUO)[R]. Honolulu, Hawaii, USA:University of Hawaii, 2010:6-20.
计量
  • 文章访问数:  222
  • HTML全文浏览量:  28
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-12-26
  • 刊出日期:  2018-06-29

目录

    /

    返回文章
    返回