考虑螺栓连接滑移影响的输电铁塔塔身结构分析

Structural analysis on a typical transmission tower body section with bolt slippage effects

  • 摘要: 在ANSYS中建立了考虑节点螺栓连接滑移特性的输电铁塔塔身节段三维有限元模型,分别计算得到了垂直荷载和水平荷载作用下塔身节段杆件轴力和节点位移,分析了螺栓连接节点类型、荷载类型和螺栓滑移距离对塔身节段杆件内力和变形的影响。垂直荷载作用下,斜材与主材节点螺栓连接滑移对塔身节段杆件轴力及节点位移的影响更为明显,塔身主材、塔腿斜材和第2节间倒K斜材轴力变化大都高于水平荷载工况;而水平荷载作用下,横隔面杆件与主材螺栓节点的连接滑移是主要影响因素,其对加载点附近塔身主材和交叉斜材轴力的影响显著,第3节间主材和交叉斜材轴力的变化幅度分别达到34.8%和45.2%。螺栓滑移距离对塔身主材和塔腿斜材轴力最大值影响较小,但对加载点竖向变形影响明显。

     

    Abstract: By considering bolt slippage effect, three dimensional FEA model for a typical transmission tower body section was established in general software ANSYS. The member axial forces and the nodal deflections were separately calculated under vertical and horizontal loading. The effects of bolted joint type, load type and bolt slip distance on member axial forces and on nodal deflections were analyzed. For the vertical loading case, the bolt slippages between diagonal members and main members have a more significant effect on member axial forces and on nodal deflections. The axial force variations of the main member, the leg diagonal member and the inverse K diagonal member at the second segment are almost higher than those of the horizontal load case. For the horizontal load case, the variations of axial forces and nodal deflections are mainly induced by the bolt slippages between transverse separator members and main members. These bolt slippages have significant effects on the main member axial forces and on the horizontal nodal deflections near the loading points. The axial force variations of the main members and the diagonal members at the third segment are up to 34.8% and 45.2%, respectively. The bolt slippage distance has little effect on the maximum axial forces of main members and leg diagonal members. However, it has a significant effect on the vertical deflection at the loading point.

     

/

返回文章
返回