砂浆材料SHPB实验及惯性效应的数值模拟研究

李潇, 方秦, 孔祥振, 吴昊

李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193. DOI: 10.6052/j.issn.1000-4750.2017.03.0244
引用本文: 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193. DOI: 10.6052/j.issn.1000-4750.2017.03.0244
LI Xiao, FANG Qin, KONG Xiang-zhen, WU Hao. SHPB TEST AND NUMERICAL INVESTIGATION ON THE INERTIA EFFECT OF MORTAR MATERIAL[J]. Engineering Mechanics, 2018, 35(7): 187-193. DOI: 10.6052/j.issn.1000-4750.2017.03.0244
Citation: LI Xiao, FANG Qin, KONG Xiang-zhen, WU Hao. SHPB TEST AND NUMERICAL INVESTIGATION ON THE INERTIA EFFECT OF MORTAR MATERIAL[J]. Engineering Mechanics, 2018, 35(7): 187-193. DOI: 10.6052/j.issn.1000-4750.2017.03.0244

砂浆材料SHPB实验及惯性效应的数值模拟研究

基金项目: 国家自然科学基金项目(51321064,51427807,51210012);国家重点研发计划项目(2016YFC0305200)
详细信息
    作者简介:

    李潇(1992-),女,湖南益阳人,硕士生,主要从事武器破坏效应和工程防护研究(E-mail:616740632@qq.com);孔祥振(1988-),男,山东德州人,工程师,博士,主要从事武器破坏效应和工程防护研究(E-mail:ouckxz@163.com);吴昊(1981-),男,陕西宝鸡人,副教授,博士,博导,主要从事军事工程防护研究(E-mail:abrahamhao@126.com).

    通讯作者:

    方秦(1962-),男,福建福清人,教授,博士,博导,副校长,主要从事结构抗爆研究(E-mail:13776608867@139.com).

  • 中图分类号: O347.3

SHPB TEST AND NUMERICAL INVESTIGATION ON THE INERTIA EFFECT OF MORTAR MATERIAL

  • 摘要: 进行了砂浆材料在不同应变率下的SHPB实验,拟合实验数据得到了动态强度放大因子DIF随应变率变化的关系曲线。基于实验测得应变率时程曲线,采用简化有限元模型,对实验进行了数值模拟。该文探讨了动态压缩实验中惯性效应产生的原因,并基于数值模拟对本实验中惯性效应对材料动态强度的影响进行了剥离,得到了砂浆材料动态强度放大因子随应变率变化的固有特性曲线,并将该固有特性曲线作为数值模拟中应变率效应的输入,计算结果与实验得到的应力-应变曲线吻合较好。进一步通过比较输入CEB推荐曲线和已有半经验公式的模拟结果,验证了所提出砂浆材料动态强度放大因子固有特性曲线的优越性。
    Abstract: The dynamic compressive properties of mortar material at different strain-rates are experimentally investigated by split Hopkinson pressure bar (SHPB) test, in which the relationship between the dynamic increase factor (DIF) and strain-rate is obtained. Numerical simulations using a simplified model are conducted based on the strain rate curve obtained from experiments. The principle of the unavoidable inertia effect known as the "structure effect" in dynamic compressive tests is discussed. To obtain the inherent DIF of mortal material subjected to high strain-rate, numerical simulations are conducted to eliminate the inertia effect. It is found that the predicted stress-strain curves in the numerical simulation agree well with the corresponding experimental data when the above-mentioned inherent DIF is used as the numerical input. Furthermore, the superiorities of the proposed inherent DIF are validated by comparing the CEB recommended DIF and existing semi-empirical DIF as the numerical inputs.
  • [1] Savoikar P, Orr J. Proceedings of the international conference on advances in concrete technology materials and construction practice[M]. Excel India, 2016:77-79.
    [2] Zhou W, Tang L, Liu X, et al. Mesoscopic simulation of the dynamic tensile behavior of concrete based on a rate-dependent cohesive model[J]. International Impact Engineering, 2016, 95:165-175.
    [3] Abrams D A. Effect of rate of application of load on the compressive strength of concrete[J]. ASTM J, 1917, 17(2):70-78.
    [4] Glanville W H, Grime G, Davies W W. The behavior of reinforced-concrete piles during driving. (includes photographs and appendices)[J]. Journal of the Institution of Civil Engineers, 1935, 1(2):150-202.
    [5] Cao J, Chung D D L. Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement[J]. Cement and Concrete research, 2002, 32(5):817-819.
    [6] Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[C]. Journal Proceedings, 1953, 49(4):729-744.
    [7] Bischoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression[J]. Journal of Engineering Mechanics, 1995, 121(6):685-693.
    [8] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization[J]. International Journal of Impact, Engineering, 2001, 25(9):869-886.
    [9] Zhang M, Wu H J, Li Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I:Experiments[J]. International Journal of Impact Engineering, 2009, 36(12):1327-1334.
    [10] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6):425-450.
    [11] CEB-FIP Model Code 1990, Bulletin D'Information No.213/214[S]. Lausanne, Switzerland:Committee International du Beton, 1993.
    [12] Hao Y, Hao H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings[J]. Engineering Structures, 2014, 73:24-38.
    [13] Brace W F, Jones A H. Comparison of uniaxial deformation in shock and static loading of three rocks[J]. Journal of Geophysical Research, 1971, 76(20):4913-4921.
    [14] Bertholf L D, Karnes C H. Two-dimensional analysis of the split Hopkinson pressure bar system[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(1):1-19.
    [15] Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411.
    [16] Lu Y B, Li Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing[J]. International Journal of Protective Structures, 2011, 2(1):127-138.
    [17] Xu H, Wen H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J]. International Journal of Impact Engineering, 2013, 60:76-81.
    [18] Hao H, Hao Y, Li Z X. Advances in protective structures research[M]. Boca Raton, CRC Press, 2012, 1:107-110.
    [19] Hernandez-Bautista E, Bentz D P, Sandoval-Torres S, et al. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions[J]. Cement and Concrete Composites, 2016, 69:38-48.
    [20] 程选生, 张爱军, 任毅, 等. 泥石流作用下砌体结构的破坏机理和防倒塌措施[J]. 工程力学, 2015, 32(8):156-163. Cheng Xuansheng, Zhang Aijun, Ren Yi, et al. Failure mechanism and anti-collapse measures of masonry structure under debris flow[J]. Engineering Mechanics, 2015, 32(8):156-163. (in Chinese)
    [21] 金浏, 杜修力. 基于细观单元等效化方法的混凝土动态破坏行为分析[J]. 工程力学, 2015, 32(4):33-40. Jin Liu, Du Xiuli. Analysis of dynamic failure behavior of concrete based on the meso-element equivalent method[J]. Engineering Mechanics, 2015, 32(4):33-40. (in Chinese)
    [22] 方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14. Fang Qin, Hong Jian, Zhang Jinhua, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5):1-14. (in Chinese)
    [23] Kong X, Fang Q, Wu H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95:61-71.
    [24] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360.
    [25] 辛雁清. 混凝土圆柱体试件和立方体试件抗压强度关系的分析[J]. 中国水能及电气化, 2015(7):59-62. Xin Yanqing. Analysis of compressive strength relationship between concrete cylinder specimen and cube specimen[J]. China Water Power & Electrification, 2015(7):59-62. (in Chinese)
    [26] 陈惠发, 萨里普A F, 余天庆, 等. 弹性与塑性力学[M]. 北京:中国建筑工业出版社, 2004:109-114. Chen Huifa, Salipu A F, Yu Tianqing, et al. Mechanics of elasticity and plasticity[M]. Beijing:China Building Industry Press, 2004:109-114. (in Chinese)
  • 期刊类型引用(4)

    1. 吕亚茹,吴琳,王媛,张冬冬,黄文雄,苏宇宸. 玻璃球宏细观冲击特性的SHPB试验和耦合数值模拟研究. 工程力学. 2023(06): 245-256 . 本站查看
    2. 刘欢,黄瑞源,蒋东,秦健,文彦博,张延泽. 硬质聚氨酯泡沫塑料的应变率效应研究. 机械工程学报. 2023(16): 192-203 . 百度学术
    3. 王建国,罗世云,张智宇,马军,张小华. 含软夹层砂浆试件冲击特性实验分析. 工程爆破. 2020(06): 17-22+34 . 百度学术
    4. 李潇,方秦,孔祥振,吴昊. 数值模拟中混凝土类材料应变率效应曲线的惯性效应修正. 工程力学. 2018(12): 46-53 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  415
  • HTML全文浏览量:  33
  • PDF下载量:  56
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-03-23
  • 修回日期:  2017-10-23
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回