Abstract:
An integrated analytical method is introduced in this paper, which can be used to predict the nonlinear structural dynamic responses for the ships under accidental collision and grounding scenarios. The structural dynamic responses include resistance and energy dissipation. Analytical method has the advantages of cost-effective and fast-calculation. The proposed analytical method contains two modules, one of which is the ship collision module and the other is the ship grounding module. In both scenarios, the deformation mechanisms of shell plating include plastic bending, membrane stretching and tearing, and the mechanisms of web girders include plastic bending and folding. Resistance and energy dissipation of the ship structural components are expressed by analytical formulas. Furthermore, numerical simulations were also conducted with code LS_DYNA, in order to prove the feasibility of the analytical method. This integrated analytical method can be used to predict crashworthiness capability and risk assessment of the ships under collision and grounding scenarios during structural design stage.