预测船舶碰撞与搁浅结构动力响应的程序实现

宋子杰, 胡志强

宋子杰, 胡志强. 预测船舶碰撞与搁浅结构动力响应的程序实现[J]. 工程力学, 2018, 35(8): 245-256. DOI: 10.6052/j.issn.1000-4750.2017.03.0232
引用本文: 宋子杰, 胡志强. 预测船舶碰撞与搁浅结构动力响应的程序实现[J]. 工程力学, 2018, 35(8): 245-256. DOI: 10.6052/j.issn.1000-4750.2017.03.0232
SONG Zi-jie, HU Zhi-qiang. AN INTEGRATED ANALYTICAL METHOD TO PREDICT STRUCTURAL DYNAMIC RESPONSES OF SHIP STRUCTURE UNDER COLLISION AND GROUNDING SCENARIOS[J]. Engineering Mechanics, 2018, 35(8): 245-256. DOI: 10.6052/j.issn.1000-4750.2017.03.0232
Citation: SONG Zi-jie, HU Zhi-qiang. AN INTEGRATED ANALYTICAL METHOD TO PREDICT STRUCTURAL DYNAMIC RESPONSES OF SHIP STRUCTURE UNDER COLLISION AND GROUNDING SCENARIOS[J]. Engineering Mechanics, 2018, 35(8): 245-256. DOI: 10.6052/j.issn.1000-4750.2017.03.0232

预测船舶碰撞与搁浅结构动力响应的程序实现

基金项目: 深水浮式平台工程化设计验证试验研究(2016ZX05028-002-004)
详细信息
    作者简介:

    胡志强(1975-),男,上海人,副教授,博士,主要从事船舶碰撞搁浅研究(E-mail:zhiqiang.hu@ncl.ac.uk).

    通讯作者:

    宋子杰(1994-),男,河南人,硕士生,从事船舶碰撞搁浅研究(E-mail:songzijie123@sjtu.edu.cn).

  • 中图分类号: U661.4

AN INTEGRATED ANALYTICAL METHOD TO PREDICT STRUCTURAL DYNAMIC RESPONSES OF SHIP STRUCTURE UNDER COLLISION AND GROUNDING SCENARIOS

  • 摘要: 该文介绍一个综合性解析计算程序,可用于预测船舶在碰撞和搁浅场景下的强非线性结构动力响应,包括结构变形阻力及能量耗散。解析计算方法具有使用方便,计算速度快,计算结果相对可靠的优点,易于工程应用。预测船舶碰撞与搁浅结构动力响应的程序包含两个模块,分别是船舶碰撞场景模块和船舶搁浅场景模块。船舶在碰撞和搁浅场景中,船体外板和内板等构件在外载荷作用下会出现弯曲、膜拉伸和撕裂的变形模式;船体桁材构件在外载荷作用下会出现弯曲和褶皱压溃变形模式。船体构件损伤失效所产生的结构变形阻力和能量耗散以解析的方式表达。此外,采用LS_DYNA程序开展数值仿真,验证解析计算程序的准确性和合理性。综合解析计算程序在结构设计阶段,对船体结构的耐撞性和船舶风险评估,都具有一定的工程应用价值。
    Abstract: An integrated analytical method is introduced in this paper, which can be used to predict the nonlinear structural dynamic responses for the ships under accidental collision and grounding scenarios. The structural dynamic responses include resistance and energy dissipation. Analytical method has the advantages of cost-effective and fast-calculation. The proposed analytical method contains two modules, one of which is the ship collision module and the other is the ship grounding module. In both scenarios, the deformation mechanisms of shell plating include plastic bending, membrane stretching and tearing, and the mechanisms of web girders include plastic bending and folding. Resistance and energy dissipation of the ship structural components are expressed by analytical formulas. Furthermore, numerical simulations were also conducted with code LS_DYNA, in order to prove the feasibility of the analytical method. This integrated analytical method can be used to predict crashworthiness capability and risk assessment of the ships under collision and grounding scenarios during structural design stage.
  • [1] Wierzbicki T, Driscoll J C. Crushing damage of web girders under localized static loads[J]. Journal of Constructional Steel Research, 1995, 33(3):199-235.
    [2] Wang G, Ohtsubo H. Deformation of ship plate subjected to very large load[J]. Proc. of 16th Int. Conf. on Offshore Mech. and Arctic Eng. (OMAE), 1997, 2:173-180.
    [3] Simonsen B C, Ocakli H. Experiments and theory on deck and girder crushing[J]. Thin-Walled Structures, 1999, 34(3):195-216.
    [4] Zhang SM. The mechanics of ship collisions[D]. Department of Naval Architecture and Offshore Engineering, Technical University of Denmark, 1999.
    [5] Hong L, Amdahl J. Crushing resistance of web girders in ship collision and grounding[J]. Marine Structures, 2008, 21(4):374-401.
    [6] Gao Z, Yang S, Hu Z. The resistance of ship web girders in collision and grounding[J]. Mathematical Problems in Engineering, 2014, 8(5):1-13.
    [7] 高振国, 胡志强, 王革. FPSO舷侧结构抗撞性能的解析计算研究[J]. 工程力学, 2014, 31(增刊1):155-160. Gao Zhenguo, Hu Zhiqiang, Wang Ge. A simplified analytical method for prediction of anti-collision capability of FPSO side structures[J]. Engineering Mechanics, 2014, 31(Suppl 1):155-160. (in Chinese)
    [8] Wang G, Arita K, Liu D. Behavior of a double hull in a variety of stranding or collision scenarios[J]. Marine Structures, 2000, 13(3):147-187.
    [9] Simonsen B C, Lauridsen L P. Energy absorption and ductile failure in metal sheets under lateral indentation by a sphere[J]. International Journal of Impact Engineering, 2000, 24(10):1017-1039.
    [10] Lee Y W, Woertz J C, Wierzbicki T. Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification[J]. International Journal of Mechanical Sciences, 2004, 46(5):751-781.
    [11] Haris Sabril, Amdahl Jorgen. An analytical model to assess a ship side during a collision[J]. Ships & Offshore Structures, 2012, 7(4):431-448.
    [12] Sun B, Wang J, Hu Z. OMAE2015-41358 on prediction for structural performance of ship side structures in head-on collision scenario[C]//Omae. 2015.
    [13] Haris S, Amdahl J. Analysis of ship-ship collision damage accounting for bow and side deformation interaction[J]. Marine Structures, 2013, 32(7):18-48.
    [14] Simonsen B C. Mechanics of ship grounding[D]. Department of Naval Architecture and Offshore Engineering, Technical University of Denmark, 1997.
    [15] Alsos H S, Amdahl J. On the resistance of tanker bottom structures during stranding[J]. Marine Structures, 2007, 20(4):218-237.
    [16] Wierzbicki T, Thomas P. Closed-form solution for wedge cutting force through thin metal sheets[J]. International Journal of Mechanical Sciences, 1993, 35(3):209-229.
    [17] Wang Ge. Structural analysis of ships' collision and grounding[D]. University of Tokyo, 1995.
    [18] Zhang S. Plate tearing and bottom damage in ship grounding[J]. Marine Structures, 2002, 15(2):101-117.
    [19] Zheng Z M, Wierzbicki T. A theoretical study of steady-state wedge cutting through metal plates[J]. International Journal of Fracture, 1996, 78(1):45-66.
    [20] Simonsen B C, Wierzbicki T. Plasticity, fracture and friction in steady-state plate cutting[J]. International Journal of Impact Engineering, 1997, 21(5):387-411.
    [21] Wang G, Ohtsubo H, Liu D. A simple method for predicting the grounding strength of ships[J]. Journal of Ship Research, 1997, 41(3):241-247.
    [22] Zeng J, Hu Z, Chen G. A steady-state plate tearing model for ship grounding over a cone-shaped rock[J]. Ships & Offshore Structures, 2014:1-13.
    [23] 孙斌, 胡志强, 王晋. 船底肋板在尖锐礁石搁浅场景下的受力分析[J]. 工程力学, 2016, 33(增刊1):266-269. Sun Bin, Hu Zhiqiang, Wang Jin. An analytical method for predicting the ship side structure response in raked bow collisions[J]. Engineering Mechanics, 2016, 33(Suppl 1):266-269. (in Chinese)
    [24] Hong Lin, Amdahl Jørgen. Rapid assessment of ship grounding over large contact surfaces[J]. Ships & Offshore Structures, 2012, 7(1):5-19.
    [25] Hu Z, Jørgen A, Lin H. Verification of a simplified analytical method for predictions of ship groundings over large contact surfaces by numerical simulations[J]. Marine Structures, 2011, 24(4):436-458.
    [26] Yu Z, Hu Z, Wang G. Plastic mechanism analysis of structural performances for stiffeners on bottom longitudinal web girders during a shoal grounding accident[J]. Marine Structures, 2015, 40:134-158.
    [27] 于兆龙, 胡志强, 王革. 船舶搁浅于台型礁石场景下双层底外底板骨材变形机理研究[J]. 工程力学, 2014, 31(9):28-36. Yu Zhaolong, Hu Zhiqiang, Wang Ge. Plastic mechanism analysis of structural performances for stiffeners on bottom longitudinal web girders during a shoal grounding accident[J]. Engineering Mechanics, 2014, 31(9):28-36. (in Chinese)
    [28] Wierzbicki T. Concertina tearing of metal plates[J]. International Journal of Solids & Structures, 1995, 32(19):2923-2943.
    [29] Hong L, Amdahl J. Plastic mechanism analysis of the resistance of ship longitudinal girders in grounding and collision[J]. Ships & Offshore Structures, 2008, 3(3):159-171.
    [30] Sun B, Hu Z, Wang G. An analytical method for predicting the ship side structure response in raked bow collisions[J]. Marine Structures, 2015, 41:288-311.
    [31] Yang P D C, Caldwell J B. Collision energy absorption of ships' bow structures[J]. International Journal of Impact Engineering, 1988, 7(2):181-196.
  • 期刊类型引用(2)

    1. 沈春燕,方海,祝露,韩娟,郁嘉诚. 波纹腹板增强泡沫夹芯复合材料结构准静态压缩吸能特性. 工程力学. 2023(01): 121-131 . 本站查看
    2. 李丹,石晓,刘福康. 冰撞载荷作用下船舶夹芯抗冲击舷侧结构设计. 交通节能与环保. 2020(02): 40-42 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  396
  • HTML全文浏览量:  35
  • PDF下载量:  70
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-03-20
  • 修回日期:  2017-07-31
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回