风机基础开孔板连接件剪切受力机理试验研究

吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青

吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138. DOI: 10.6052/j.issn.1000-4750.2017.03.0207
引用本文: 吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138. DOI: 10.6052/j.issn.1000-4750.2017.03.0207
LÜ Wei-rong, ZHU Feng, LU Bei-rong, SHI Wei-hua, ZHANG Jia-zhi, HE Xiao-kun, QING Sheng-qing. EXPERIMENTAL STUDY ON SHEAR MECHANISM OF PERFOBOND CONNECTORS IN WIND TURBINES FOUNDATION[J]. Engineering Mechanics, 2018, 35(7): 127-138. DOI: 10.6052/j.issn.1000-4750.2017.03.0207
Citation: LÜ Wei-rong, ZHU Feng, LU Bei-rong, SHI Wei-hua, ZHANG Jia-zhi, HE Xiao-kun, QING Sheng-qing. EXPERIMENTAL STUDY ON SHEAR MECHANISM OF PERFOBOND CONNECTORS IN WIND TURBINES FOUNDATION[J]. Engineering Mechanics, 2018, 35(7): 127-138. DOI: 10.6052/j.issn.1000-4750.2017.03.0207

风机基础开孔板连接件剪切受力机理试验研究

基金项目: 湖南省自然科学基金委员会与湘潭市政府自然科学联合基金项目(14JJ5012);国家自然科学基金面上项目(51578235,51678234).
详细信息
    作者简介:

    吕伟荣(1974-),男,江西人,副教授,博士,主要从事组合结构、高层结构及配筋砌体结构研究(E-mail:Lwrxm@126.com);卢倍嵘(1975-),男,湖南人,讲师,博士,从事组合结构研究(E-mail:270412853@qq.com);石卫华(1978-),男,湖南人,讲师,博士,从事钢结构研究(E-mail:26493494@qq.com);张家志(1983-),男,湖北人,工程师,学士,从事组合结构研究(E-mail:363420976@qq.com);何潇锟(1993-),男,湖南人,硕士生,从事组合结构研究(E-mail:603065537@qq.com);卿胜青(1993-),男,湖南人,硕士生,从事组合结构研究(E-mail:570308701@qq.com).

    通讯作者:

    朱峰(1991-),男,湖南人,工程师,硕士,从事组合结构研究(E-mail:792463292@qq.com).

  • 中图分类号: TU476+.9

EXPERIMENTAL STUDY ON SHEAR MECHANISM OF PERFOBOND CONNECTORS IN WIND TURBINES FOUNDATION

  • 摘要: 鉴于目前国内出现了多台问题风机基础中穿孔钢筋疲劳脆断的工程事故,该文基于风机基础常采用的开孔板连接件构造,考虑多孔受力影响,共进行了4组12个开孔板连接件的推出试验以确定其抗剪承载力,并为其极端和运行工况设计提供依据。试验结果表明,穿筋试件的破坏过程大致分为3个阶段:①钢板与混凝土界面间摩擦受力阶段;②混凝土榫孔剪切受力阶段;③穿孔钢筋塑性剪断及其变形上方混凝土压溃。应变测试结果表明,由于穿孔钢筋的加入,上排孔的剪切受力使得下排穿孔钢筋弯曲受力明显,试件抗剪承载力较未穿筋试件得到显著提高;破坏阶段中,钢筋弯曲受力状态转变为孔内受剪,随着其上方混凝土的压溃,钢筋因受剪屈服退出工作;随着竖向裂缝的开展,全穿筋试件中3根钢筋均屈服,强度和塑性均得到有效的发挥,建议工程对中排、下排设置穿孔钢筋或三孔全设置。基于试验结果,针对不同构造的多孔推出试件破坏形态建立了多孔穿筋推出试件的抗剪承载力统一计算公式,计算结果表明计算值与试验值吻合较好,且偏于保守,可应用于实际工程。
    Abstract: Because fatigue fracture of steel bars had occurred in perfobond connectors of wind turbines foundation, 4 different groups, totally 12 push-out tests were carried out to provide evidence for the design of wind turbines foundation under extreme and running condition. Test specimens were designed to have many perfobond connectors along the direction of shear load considering the structure of wind turbines foundation and pre-existing push-out test of PBL shear connector. Test results show that the failure process of push-out test includes three stages, the interface friction between concrete and steel plate, the concrete tenon holes of perfobond connector resisting shear load, and the steel bar of perfobond connector yielding and its upper concrete crushing. Compared with the case of no steel bar perfobond connector, the strain results of steel bar and plate show that the bending stress on bottom steel bar is more obviously because of the shear stress on upper steel bar, and the shear capacity of specimen is significantly improved. During the failure stage, the stress state of steel bar changes from bending to shear, and the steel bar yields with the crush of its upper concrete. Because 3 steel bars all yields gradually with the growing of vertical cracks, the strength and plasticity of specimen is fully developed. 3 steel bars or 2 steel bars locating at the second and third perfobond connector is suggested in the design of wind turbines foundation. Based on this test results, the shear strength formula of perfobond connector in wind turbines foundation was put forward. Compared with tests results, the calculated value tends to be a little conservative, and can be used for the design of wind turbines foundation.
  • [1] FD 003-2007, 风电机组地基基础设计规定(试行)[S]. 北京:中国水利水电出版社, 2007. FD 003-2007, Design regulations on subgrade and foundation for wind turbine generator system[S]. Beijing:China WaterPower Press, 2007. (in Chinese)
    [2] 马人乐, 孙永良, 黄冬平. 风力发电塔基础设计改进研究[J]. 结构工程师, 2009, 25(5):93-97. Ma Renle, Sun Yongliang, Huang Dongping. Optimum design research on wind turbine generator tower foundation[J]. Structural Engineers, 2009, 25(5):93-97. (in Chinese)
    [3] 练继建, 刘喜珠, 张立英, 等. 风机基础钢混组合结构细部损伤分析研究[J]. 水利水电技术, 2011, 42(1):48-53. Lian Jijian, Liu Xizhu, Zhang Liying, et al. Study and analysis on detailed damages of steel concrete composite structure for wind turbine foundation[J]. Water Resources and Hydropower Engineering, 2011, 42(1):48-53. (in Chinese)
    [4] 周新刚. 风力发电机组钢筋混凝土基础设计问题探讨[J]. 水利水电技术, 2014, 45(2):114-118. Zhou Xingang. Discussion on design of reinforced concrete foundation for wind turbine generator set[J].Water Resources and Hydropower Engineering, 2014, 45(2):114-118. (in Chinese)
    [5] 田静, 许新勇, 刘宪亮. 风力发电机基础接触问题研究[J]. 水电能源科学, 2010, 28(12):154-156. Tian Jing, Xu Xinyong, Liu Xianliang. Study on contact nonlinearity of wind turbine generator foundation[J]. Water resources and power, 2010, 28(12):154-156. (in Chinese)
    [6] 张家志, 王超飞, 吕伟荣, 等. 基于非线性接触的风电基础数值模拟[J]. 太阳能学报, 2016, 37(3):591-597. Zhang Jiazhi, Wang Chaofei, Lü Weirong, et al. Nonlinear contact analysis of wind turbine foundation[J]. Acta Energiae Solaris Sinica, 2016, 37(3):591-597. (in Chinese)
    [7] 孔德伟. 风机基础钢环与混凝土锚固机理分析与试验[M]. 长沙:湖南科技大学, 2012. Kong Dewei. The principle and experiment of anchoring for steel ring in wind power foundation[M]. Changsha:Hunan University of Science and Technology, 2012. (in Chinese)
    [8] 李艳慧. 风电基础混凝土与钢环粘结应力传递试验及分析[D]. 长沙:湖南科技大学, 2012. Li Yanhui. The test and theoretical analysis of bonding stress transmission of concrete and steel ring for wind turbine foundation[D]. Changsha:Hunan University of Science and Technology, 2012. (in Chinese)
    [9] 王超飞. 风机基础数值模拟分析及结构设计优化研究[D]. 长沙:湖南科技大学, 2013. Wang Chaofei. The study on numerical simulation analysis of wind turbine foundation and structural optimization[D]. Changsha:Hunan University of Science and Technology, 2012. (in Chinese)
    [10] 周新刚, 孔会. 某风机钢筋混凝土基础破坏实例及有限元分析[J]. 中国电力, 2014, 47(2):116-119. Zhou Xingang, Kong Hui. Case study on reinforced foundation damage of wind turbine generator tower with finite element method[J]. China Power, 2014, 47(2):116-119. (in Chinese)
    [11] 康明虎, 徐慧, 黄鑫. 基础环形式风机基础局部损伤分析[J]. 太阳能学报, 2014, 34(4):583-588. Kang Minghu, Xu Hui, Huang Xin. Local damage analysis of near foundation ring in wind turbine foundation[J]. Acta Energiae Solaris Sinica, 2014, 34(4):583-588. (in Chinese)
    [12] 康明虎. 某风电场风机基础故障分析及处理[J]. 可再生能源, 2014, 32(6):809-813. Kang Minghu, Analysis and treatment of wind turbine foundation fault in a wind farm[J]. Renewable Energy Resources, 2014, 32(6):809-813. (in Chinese)
    [13] 马人乐, 黄冬平. 风电结构亚健康状态研究[J]. 特种结构, 2014, 31(4):1-4. Ma Renle, Huang Dongping. Wind power structure of sub-health state[J]. Special Structure, 2014, 31(4):1-4. (in Chinese)
    [14] 吕伟荣, 朱峰, 张家志, 等. 风机基础损伤破坏发展机理研究[C]//第24届全国结构工程学术会议. 北京:《工程力学》杂志社, 2015:393-397. Lu Weirong, Zhu Feng, Zhang Jiazhi. Study on the mechanism of the damage of wind turbine foundation[C]//Proceedings of the 24th National Conference on Structure Engineering. Beijing, Engineering Mechanics, 2015:393-397. (in Chinese)
    [15] 朱峰. 风机基础环界面开孔钢板抗剪试验研究[D]. 长沙:湖南科技大学, 2016. Zhu Feng. Experimental research on the shear strength of the perfobond strip of the wind turbine foundation interface[D]. Changsha:Hunan University of Science and Technology, 2016. (in Chinese)
    [16] GL2010, Guideline for the certification of wind turbines[S]. 2010.
    [17] 张清华, 李乔, 卜一之. PBL剪力连接件群传力机理研究Ⅱ:极限承载力[J]. 土木工程学报, 2011, 44(5):101-108. Zhang Qinghua, Li Qiao, Bu Yizhi. Load transmission mechanism of PBL shear connector groups Ⅱ:load capacity[J]. China Civil Engineering Journal, 2011, 44(5):101-108. (in Chinese)
    [18] 张清华, 李乔, 卜一之. PBL剪力连接件群传力机理研究Ⅰ:理论模型[J]. 土木工程学报, 2011, 44(4):71-77. Zhang Qinghua, Li Qiao, Bu Yizhi. Load transmission mechanism of PBL shear connector groups Ⅰ:theoretical model[J]. China Civil Engineering Journal, 2011, 44(4):71-77. (in Chinese)
    [19] 杨勇. 型钢混凝土粘结滑移基本理论及应用研究[D]. 陕西:西安建筑科技大学, 2003. Yang Yong. Study on the basic theory and its application of bond-slip between steel shape and concrete in src structures[D]. Shaanxi:Xi'an University of Architecture & Technology August, 2003. (in Chinese)
    [20] 胡建华, 叶梅新, 黄琼. PBL剪力连接件承载力试验[J]. 中国公路学报, 2006, 19(6):65-72. Hu Jianhua, Ye Meixin, Huang Qiong. Experiment on bearing capacity of PBL shear connectors[J]. China Journal of Highway and Transport, 2006, 19(6):65-72. (in Chinese)
    [21] 薛伟辰, 代燕, 周良, 等. 开孔板连接件受剪性能试验研究[J]. 建筑结构学报, 2009, 30(5):103-111. Xue Weichen, Dai Yan, Zhou Liang, et al. Experimental studies on shear behavior of perfobond connectors[J]. Journal of Building Structures, 2009, 30(5):103-111. (in Chinese)
    [22] 石宵爽, 王清远, 欧阳雯欣, 等. PBL剪力连接件粘结滑移性能的静载推出试验研究[J]. 工程力学, 2012, 29(1):168-175. Shi Xiaoshuang, Wang Qingyuan, Ou Yangwenqin, et al. Push-out experimental study on bond-slip behaviors of PBL shear connector under static loading[J]. Engineering Mechanics, 2012, 29(1):168-175. (in Chinese)
    [23] 宗周红, 车惠民. 剪力连接件静载和疲劳试验研究[J]. 福州大学学报(自然科学版), 1999, 27(6):61-66. Zong Zhouhong, Che Huimin. Experimental study of shear connector under static and fatigue loading[J]. Journal of Fuzhou University (Natural Science), 1999, 27(6):61-66. (in Chinese)
    [24] 苏庆田, 汪瑞, 王巍. 开孔板连接件剪切受力机理的试验研究[J]. 同济大学学报(自然科学版), 2013, 41(11):1623-1629. Su Qingtian, Wang Rui, Wang Wei. Experiment on shear transferring mechanics of perfobond rib connector[J]. Journal of Tongji University (Natural Science), 2013, 41(11):1623-1629. (in Chinese)
    [25] Zeuner W. Composite construction in steel and concrete[M]. New York:American Society of Civil Engineers, 1987.
    [26] Oguejiofor E C, Hosain M U. Tests of full-size composite beams with perfobond rib connectors[J]. Canadian Journal of Civil Engineering, 1995, 22(3):80-92.
    [27] Vianna J da C, Costa-Neves L F, P. C. G. da SVeuasco, et al. Experimental assessment of perfobond and T-perfobond shear connectors' structural response[J]. Journal of Constructional Steel Research, 2009, 65(2):408-421.
    [28] 苏庆田, 汪瑞, 王巍. 波折开孔板连接件基本力学性能试验[J]. 中国公路学报, 2012, 25(2):46-52. Su Qingtian, Wang Rui, Wang Wei. Experiment on the mechanical properties of corrugated rib connector[J]. China Journal of Highway and Transport, 2012, 25(2):46-52. (in Chinese)
    [29] 张宁, 刘永健, 刘士林. 单孔PBL剪力连接件疲劳性能试验研究[J]. 建筑结构学报, 2014, 35(3):186-192. Zhang Ning, Liu Yongjian, Liu Shilin. Experimental study on fatigue behavior of single PBL shear connector[J]. Journal of Building Structures, 2014, 35(3):186-192. (in Chinese)
    [30] He Shaohua, Fang Zhi, Mosallam A S. Push-out tests for perfobond strip connectors with UHPC grout in the joints of steel-concrete hybrid bridge girders[J]. Engineering Structures, 2017, 135(3):177-190.
    [31] He Shaohua, Fang Zhi, Fang Yawei, et al. Experimental study on perfobond strip connector in steel-concrete joints of hybrid bridges[J]. Journal of Constructional Steel Research, 2016, 118(3):169-179.
    [32] Zou Xingxing, Feng Peng, Wang Jingquan. Perforated FRP ribs for shear connecting of FRP-concrete hybrid beams/decks[J]. Composite Structures, 2016, 152(2016):267-276.
    [33] 汪维安, 李乔, 赵灿晖, 等. 混合结构PBL剪力键的荷载-滑移特征曲线研究[J]. 工程力学, 2015, 32(3):57-65, 81. Wang Weian, Li Qiao, Zhao Canhui, et al. Study on load-slip characteristic curve of perfobond shear connectors in hybrid structures[J]. Engineering Mechanics, 2015, 32(3):57-65, 81. (in Chinese)
    [34] 汪维安, 李乔, 赵灿晖, 等. 基于PPP-BOTDA技术的PBL剪力键群应变测试研究[J]. 工程力学, 2015, 32(1):111-119. Wang Weian, Li Qiao, Zhao Canhui, et al. Strain measurement on pbl shear connector group based on PPP-BOTDA distributed fiber optic sensing techniques[J]. Engineering Mechanics, 2015, 32(1):111-119. (in Chinese)
    [35] 陈津凯, 陈宝春, 刘君平. 钢管混凝土多排多列内栓钉受剪性能[J]. 工程力学, 2017, 34(6):178-189. Chen Jinkai, Chen Baochun, Liu Junping. Shear performance of multi-studs between steel tube and core concrete[J]. Engineering Mechanics, 2017, 34(6):178-189. (in Chinese)
    [36] 苏庆田, 许园春, 王巍. 开孔板连接件剪切受力的理论模型[J]. 同济大学学报(自然科学版), 2013, 41(12):1775-1780. Su Qingtian, Xu Yuanchun, Wang Wei. Theory model of shear transferring for perfobond rib connector[J]. Journal of Tongji University (Natural Science), 2013, 41(12):1775-1780. (in Chinese)
    [37] 王传志, 滕智明. 钢筋混凝土结构理论[M]. 北京:中国建筑工业出版社, 1985. Wang Chuanzhi, Teng Zhiming. Theory of reinforced concrete structures[M]. Beijing:China Building Industry Press, 1985. (in Chinese)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  42
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 修回日期:  2017-07-23
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回