基于云计算的框架结构参数并行辨识算法

姜绍飞, 任晖, 骆剑彬

姜绍飞, 任晖, 骆剑彬. 基于云计算的框架结构参数并行辨识算法[J]. 工程力学, 2018, 35(4): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.01.0005
引用本文: 姜绍飞, 任晖, 骆剑彬. 基于云计算的框架结构参数并行辨识算法[J]. 工程力学, 2018, 35(4): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.01.0005
JIANG Shao-fei, REN Hui, LUO Jian-bin. A PARALLEL IDENTIFICATION ALGORITHM ON PHYSICAL PARAMETERS OF FRAME STRUCTURES BASED ON CLOUD COMPUTING[J]. Engineering Mechanics, 2018, 35(4): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.01.0005
Citation: JIANG Shao-fei, REN Hui, LUO Jian-bin. A PARALLEL IDENTIFICATION ALGORITHM ON PHYSICAL PARAMETERS OF FRAME STRUCTURES BASED ON CLOUD COMPUTING[J]. Engineering Mechanics, 2018, 35(4): 135-143. DOI: 10.6052/j.issn.1000-4750.2017.01.0005

基于云计算的框架结构参数并行辨识算法

基金项目: 国家"十二五"科技支撑计划项目(2015BAK14B02-06)
详细信息
    作者简介:

    任晖(1991-),男,湖北人,硕士生,主要从事结构健康监测研究(E-mail:n140520035@fzu.edu.cn);骆剑彬(1982-),男,福建人,助理研究员,博士生,主要从事结构健康监测与软件开发研究(E-mail:ljb312@fzu.edu.cn).

    通讯作者:

    姜绍飞(1969-),男,山东人,闽江学者特聘教授,博士,博导,主要从事结构健康监测与加固研究(E-mail:cejsf@fzu.edu.cn).

  • 中图分类号: TU311.3;TU311.41;TU312+.1

A PARALLEL IDENTIFICATION ALGORITHM ON PHYSICAL PARAMETERS OF FRAME STRUCTURES BASED ON CLOUD COMPUTING

  • 摘要: 大型复杂结构健康监测(Structural Health Monitoring,SHM)系统的安装产生了海量监测数据,传统结构分析与数据处理技术使得监测数据得不到实时分析处理,导致不能及时评估结构工作状态并进行危险预警。为了解决这一问题,该文对传统多粒子群协同优化(Multi-Particle Swarm Coevolution Optimization,MPSCO)算法进行分布式并行化改进,开发了基于云计算的PMPSCO算法。在此基础上,提出了基于PMPSCO算法的框架结构物理参数辨识方法,并在MATLAB分布式云计算平台上对一个15层框架数值试验和一个7层钢框架实验室试验进行结构物理参数辨识,探讨了接入不同分布式并行节点数时该算法的加速关系。辨识结果表明:PMPSCO算法具有良好的精度、稳定性和拓展性,可通过增加接入的分布式并行节点数灵活提高算法运算速度,以满足结构监测数据实时处理的要求。
    Abstract: The installation of large-scale complex Structural Health Monitoring (SHM) systems causes huge amount of data. Traditional structural analysis and data processing techniques cannot real-time process the data from SHM systems. Timely status assessment and risk warning cannot be available to these large-scale complex structures. To solve this problem, parallel improvement is conducted in the traditional multi-particle swarm coevolution optimization (MPSCO) algorithm, thus a new PMPSCO algorithm based on cloud computing is developed. On the basis of the PMPSCO algorithm, a parallel physical parameter identification method is proposed for frame structures, and a numerical experiment of a 15-story frame and a laboratory test of a 7-story steel frame are analyzed to validate the proposed method. Furthermore, the relationship between speedup ratio and number of parallel nodes are explored on MATLAB distributed cloud computing platform. The identification results indicate that the proposed PMPSCO algorithm has high precision, good stability and expandability. In addition, the speed of algorithm can be increased greatly by adding more parallel nodes to meet the needs of real-time processing monitoring data.
  • [1] Housner G W, Bergman L A, Caughey T K, et al. Structural control:Past, present, and future[J]. Journal of Engineering Mechanics, 1997, 123(9):897-971.
    [2] 姜绍飞. 结构健康监测导论[M]. 北京:科学出版社, 2013:248-305. Jiang Shaofei. Introduction to structural health monitoring[M]. Beijing:Science Press, 2013:248-305. (in Chinese)
    [3] 陈志为. 基于健康监测系统的大跨多荷载桥梁的疲劳可靠度评估[J]. 工程力学, 2014, 31(7):99-105. Chen Zhiwei. Fatigue reliability assessment of multi-loading suspension bridges based on SHMs[J]. Engineering Mechanics, 2014, 31(7):99-105. (in Chinese)
    [4] 林健富, 程瀛, 黄建亮, 等. 大型建筑结构健康监测的海量数据处理与数据库开发研究[J]. 振动与冲击, 2010, 29(12):55-59. Lin Jianfu, Cheng Ying, Huang Jianliang, et al. Massive data processing in large-scale structural health monitoring and the corresponding database development[J]. Journal of Vibration and Shock, 2010, 29(12):55-59. (in Chinese)
    [5] 李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8):1-7. Li Hui, Bao Yuequan, Li Shunlong, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8):1-7. (in Chinese)
    [6] Nikhil S, Vinayak B, Yogesh Z. Virtual machine monitoring in cloud computing[J]. Procedia Computer Science, 2016, 79:135-142.
    [7] 王金海, 黄传河, 王晶, 等. 异构云计算体系结构及其多资源联合公平分配策略[J]. 计算机研究与发展, 2015, 52(6):1288-1302. Wang Jinhai, Huang Chuanhe, Wang Jing, et al. A heterogeneous cloud computing architecture and multi-resource-joint fairness allocation strategy[J]. Journal of Computer Research and Development, 2015, 52(6):1288-1302. (in Chinese)
    [8] 吉兴全, 王成山. 电力系统并行计算方法比较研究[J]. 电网技术, 2003, 27(4):22-26. Ji Xingquan, Wang Chengshan. A comparative study on parallel processing applied in power system[J]. Power System Technology, 2003, 27(4):22-26. (in Chinese)
    [9] 陈占龙, 吴洁, 谢忠, 等. 分布式空间信息的对等协同计算机制研究[J]. 计算机应用研究, 2008, 25(7):2060-2063. Chen Zhanlong, Wu Jie, Xie Zhong, et al. Study of peer-to-peer and cooperating computing of distributed geospatial information[J]. Application Research of Computers, 2008, 25(7):2060-2063. (in Chinese)
    [10] 潘巍, 李战怀. 大数据环境下并行计算模型的研究进展[J]. 华东师范大学学报(自然科学版), 2014, 2014(5):43-54. Pan Wei, Li Zhanhuai. Development of parallel computing models in the big data era[J]. Journal of East China Normal University (Natural Science), 2014, 2014(5):43-54. (in Chinese)
    [11] 饶文碧, 程洪斌, 吴代华, 等. 基于网络并行计算的结构损伤动力有限元分析[J]. 武汉工业大学学报, 2000, 22(5):108-110. Rao Wenbi, Cheng Hongbin, Wu Daihua, et al. Dynamic finite element analysis of damaged structure using network-based parallel computing[J]. Journal of Wuhan University of Technology, 2000, 22(5):108-110. (in Chinese)
    [12] Yu L, Lin J C. Cloud computing-based time series analysis for structural damage detection[J]. Journal of Engineering Mechanics, 2017, 143(1):1-14.
    [13] 林菁淳. 基于云计算的结构损伤检测[D]. 广州:暨南大学, 2014. Lin Jingchun. Structural damage detection based on cloud computing[D]. Guangzhou:Jinan University, 2014. (in Chinese)
    [14] 陈亮. 结构健康监测物联网系统的云计算应用研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Chen Liang. Study on application of cloud computing in structural health monitoring of things system[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
    [15] 姜绍飞, 吴兆旗. 结构健康监测与智能信息处理技术及应用[M]. 北京:中国建筑工业出版社, 2011:10-23. Jiang Shaofei, Wu Zhaoqi. Structural health monitoring and intelligent information processing technique and application[M]. Beijing:China Architecture and Building Press, 2011:10-23. (in Chinese)
    [16] 董利强. 基于改进多粒子群协同优化与统计特征提取的智能损伤检测[D]. 福州:福州大学, 2012. Dong Liqiang. Intelligent damage detection based on revised multi-particle swarm coevolution optimization and statistical feature extraction[D]. Fuzhou:Fuzhou University, 2012. (in Chinese)
    [17] 吴思瑶. 基于改进协同PSO的时变非线性结构损伤识别研究[D]. 福州:福州大学, 2014. Wu Siyao. Damage identification for time-varying nonlinear structure based on improved multi-particle swarm coevolution optimization algorithm[D]. Fuzhou:Fuzhou University, 2014. (in Chinese)
    [18] 李爱国. 多粒子群协同优化算法[J]. 复旦学报(自然科学版), 2004, 43(5):923-925. Li Aiguo. Particle swarms cooperative optimizer[J]. Journal of Fudan University (Natural Science), 2004, 43(5):923-925. (in Chinese)
    [19] Newmark N M. A method of computation for structural dynamics[J]. Proc ASCE, 1959, 85(1):67-94.
    [20] Corporation H P. A time-domain structural damage detection method based on improved multi-particle swarm coevolution optimization algorithm[J]. Mathematical Problems in Engineering, 2014, 44(1):77-85.
  • 期刊类型引用(6)

    1. 闫龙,李永健. 基于大数据分析的BIM装配式构件损伤可视化识别方法. 自动化与仪器仪表. 2021(12): 81-84+89 . 百度学术
    2. 梅杰,张博文,张春云,彭海峰,崔苗. 幂强化弹塑性材料平面应变反问题. 工程力学. 2020(01): 248-256 . 本站查看
    3. 王慧,王乐,田润泽. 基于时域响应相关性分析及数据融合的结构损伤检测研究. 工程力学. 2020(09): 30-37+111 . 本站查看
    4. 杨振伟,周广东,伊廷华,李宏男. 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究. 工程力学. 2019(03): 63-70 . 本站查看
    5. 孙伟. 基于云计算的网络资源缺失信息识别方法. 电子元器件与信息技术. 2019(11): 38-39 . 百度学术
    7. 周宏元,张广才,王小娟,倪萍禾,王利辉. 基于改进蝴蝶优化算法的结构损伤识别. 振动.测试与诊断. 2023(01): 164-171+204 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  374
  • HTML全文浏览量:  38
  • PDF下载量:  55
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-01-02
  • 修回日期:  2017-09-11
  • 刊出日期:  2018-04-24

目录

    /

    返回文章
    返回