平板支座抗震性能的有限元研究

崔瑶, 高晓玉, 李梦玥

崔瑶, 高晓玉, 李梦玥. 平板支座抗震性能的有限元研究[J]. 工程力学, 2018, 35(2): 169-179. DOI: 10.6052/j.issn.1000-4750.2016.10.0784
引用本文: 崔瑶, 高晓玉, 李梦玥. 平板支座抗震性能的有限元研究[J]. 工程力学, 2018, 35(2): 169-179. DOI: 10.6052/j.issn.1000-4750.2016.10.0784
CUI Yao, GAO Xiao-yu, LI Meng-yue. FINITE ELEMENT ANALYSIS ON THE SEISMIC BEHAVIOR OF ROOF JOINTS[J]. Engineering Mechanics, 2018, 35(2): 169-179. DOI: 10.6052/j.issn.1000-4750.2016.10.0784
Citation: CUI Yao, GAO Xiao-yu, LI Meng-yue. FINITE ELEMENT ANALYSIS ON THE SEISMIC BEHAVIOR OF ROOF JOINTS[J]. Engineering Mechanics, 2018, 35(2): 169-179. DOI: 10.6052/j.issn.1000-4750.2016.10.0784

平板支座抗震性能的有限元研究

基金项目: 国家自然科学基金项目(51678106)
详细信息
    作者简介:

    高晓玉(1992―),女,辽宁人,硕士生,主要从事网架支座抗震方面的研究(E-mail:gaoxiaoyu@mail.dlut.edu.cn);李梦玥(1993―),女,辽宁人,硕士生,主要从事网架支座抗震方面的研究(E-mail:limengyue@mail.dlut.edu.cn).

    通讯作者:

    崔瑶(1983―),女(满族),辽宁人,副教授,博士,主要从事钢结构抗震方面的研究(E-mail:cuiyao@dlut.edu.cn).

  • 中图分类号: TU352.1+1

FINITE ELEMENT ANALYSIS ON THE SEISMIC BEHAVIOR OF ROOF JOINTS

  • 摘要: 为了研究水平荷载下不同砂浆层厚度的平板支座节点的抗震性能及受力机理,该文利用有限元软件ABAQUS,模拟分析了8个砂浆层厚度为0 mm~50 mm的平板支座节点在单调和循环荷载下的破坏模式及承载力曲线,并将模型破坏模式及极限承载力计算值与试验结果进行对比,结果证明该模型可有效对平板支座的滞回性能进行计算分析。有限元计算结果表明,随着砂浆层厚度增加,支座节点极限承载力降低,支座锚栓由剪切变形变为弯曲变形;支座锚栓近似均匀受力;循环加载下平板支座的承载力相比于单调加载降低约30%。在有限元参数分析的基础上,综合考虑了支座锚栓的破坏机制及支座锚栓的变形对平板支座水平承载力的影响,总结平板支座的水平承载力主要由支座锚栓承担的剪力、支座锚栓轴力的水平分量及摩擦力组成,提出了平板支座节点水平承载力的计算公式。同时,在公式中引入折减系数0.7,考虑循环加载对平板支座节点水平承载力的降低。
    Abstract: To study the seismic behavior and stress mechanism of roof joints with mortar layers of different thicknesses under horizontal load, a parametric finite element analysis of roof joints was conducted using ABAQUS. Considering the effects of mortar thickness and loading type on the failure modes and bearing capacity curve of the roof joint, eight specimens with mortar thicknesses between 0 mm to 50 mm under either monotonic or cyclic loading were simulated. Compared with the test results, the finite element model is proved to be accurate enough for further analysis. It is noted that as the thickness of mortar layer increased, the failure mode of the anchor rods of the roof joint is changed from shear failure mode to bending failure mode. Therefore, the lateral resistance of the roof joint is reduced as the thickness of the mortar layer increases. The four anchor rods of a roof joint transfer similar amount of lateral force. The lateral resistance of the roof joint under cyclic loading is reduced by 30% compared with that under monotonic loading. Based on the analysis results, evaluation equations of the lateral resistance of roof joints were proposed which take into account the stress mechanism and the deformation of anchor rods. The lateral resistance is consisted of the shear resistance of anchor rods, the friction force between mortar layer and concrete, and the horizontal component of axial force of anchor rods. Moreover, a reduction factor of 0.7 is adopted to consider the effect of cyclic loading.
  • [1] 杨琴, 邓华, 李骁然. 中小跨度网架结构的弹塑性地震相应分析[J]. 空间结构, 2016, 22(3): 3-10. Yang Qin, Deng Hua, Li Xiaoran. Analysis on elasto-plastic seismic response of small-span and medium-span grid structure [J]. Spatial Structures, 2016, 22(3): 3-10. (in Chinese)
    [2] 张毅刚, 薛素铎, 杨庆山, 等. 大跨空间结构[M]. 第2版. 北京: 机械工业出版社, 2013: 55-101. Zhang Yigang, Xue Suduo, Yang Qingshan, et al. Large-span space structure [M]. 2nd ed. Beijing: China Machine Press, 2013: 55-101. (in Chinese)
    [3] 张瑞甫, 曹淼, 唐和生, 等. 3·11大地震中大空间结构破坏主因及加固对策[J]. 结构工程师, 2015, 31(2): 21-27. Zhang Ruifu, Cao Miao, Tang Hesheng, et al. Study on the joint damage and retrofitting of a large span structure after the great east japan earthquake [J]. Structural Engineers, 2015, 31(2): 21-27. (in Chinese)
    [4] Dai Junwu, Qu Zhe, Zhang Chenxiao, et al. Preliminary investigation of seismic damage to two steel space structures during the 2013 Lushan earthquake [J]. Earthquake Engineering and Engineering Vibration, 2013, 12(3): 497-500.
    [5] 聂桂波, 戴君武, 张辰啸. 芦山地震中大跨空间结构主要破坏模式及数值分析[J]. 土木工程学报, 2015, 48(4): 1-6. Nie Guibo, Dai Junwu, Zhang Chenxiao. Failure patterns of large span space structures in Lushan earthquake and numerical simulation [J]. China Civil Engineering Journal, 2015, 48(4): 1-6. (in Chinese)
    [6] 日本建築学会. 阪神·淡路大震災調査報告[R]. 日本. 日本建築学会, 2000: 132-156. Architecture Institute of Japan (AIJ). Report on the Hanshin-Awaji earthquake disaster [R]. Japan. AIJ, 2000: 132-156. (in Japanese)
    [7] 日本建築学会. 東日本大震災合同調査報告(建築編3)[R]. 日本. 日本建築学会, 2014: 286-299. Architecture Institute of Japan (AIJ). Report on the Great East Japan Earthquake Disaster (Building Series Volume 3) [R]. Japan. AIJ, 2014: 286-299. (in Japanese)
    [8] 范重, 杨苏, 栾海强. 空间结构节点设计研究进展与实践[J]. 建筑结构学报, 2011, 32(12): 1-15. Fan Zhong, Yang Su, Luan Haiqiang. Research progress and practice of design of spatial structure joints [J]. Journal of Building Structures, 2011, 32(12): 1-15. (in Chinese)
    [9] 施刚, 陈经纬, 陈宏. 上部大跨钢结构与下部混凝土结构协同工作研究进展[C]. 合肥: 中国钢结构协会结构稳定与疲劳分会第14届学术交流会暨教学研讨会, 2014: 39-51. Shi Gang, Chen Jingwei, Chen Hong. Research progress on cooperative work of upper large-span steel structure with supporting concrete structure [C]. Hefei: Proceedings of the 14th Colloquium Institute of Structural Stability and Fatigue China Steel Construction Society, 2014: 39-51. (in Chinese)
    [10] 石光磊, 甘明, 薛素铎. 网架结构支座周边杆件抗震设计研究[C]. 福州: 第十四届空间结构学术会议. 2012: 242-245. Shi Guanglei, Gan Ming, Xue Suduo. The seismic design study of surrounding members of supports in grid structure [C]. Fuzhou: 14th Spatial Structure Academic Meeting, 2012: 242-245. (in Chinese)
    [11] JGJ 7-2010, 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010. JGJ 7-2010, Technical specification for space frame structures [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese)
    [12] 李星蓉, 魏才昂, 丁峙昆, 等. 钢结构连接节点设计手册[M]. 第3版. 北京. 中国建筑工业出版社, 2014: 186-189. Li Xingrong, Wei Cai'ang, Ding Zhikun, et al. Joint design manual for steel structures [M]. 3rd ed. Beijing. China Architecture & Building Press, 2014: 186-189. (in Chinese)
    [13] GB 50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing: China Architecture Industry Press, 2010. (in Chinese)
    [14] 山田哲, 島田侑子, 戸松一輝. 繰り返し荷重を受け る鉄骨置き屋根定着部の実験:鉄骨置き屋根定着部に関する研究その1[J]. 日本建築学会構造系論文集, 2014, 79(705): 1687-1697. Yamada Satoshi, Shimada Yuko, Tomatsu Kazuki, et al. Cyclic loading tests of connection between RC frame and steel roof: Study of connection between RC frame and steel roof (Part 1) [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2014, 79(705): 1687-1697. (in Japanese)
    [15] 戸松一輝, 山田哲, 島田侑子. 鉄骨造置き屋根のRC架構への定着部の載荷実験: G、H シリーズ実験方法および結果その11[J]. 関東支部研究報告集, 2016, 86(I): 277-280. Tomatsu Kazuki, Yamada Satoshi, Shimada Yuko, et al. Loading tests of connections between RC frame and steel roof: Results and methods of the tests for the series of G and H (Part 11) [C]. Summaries of Technical Papers of Annual Meeting Kanto Branch AIJ, 2016, 86(I), 277-280. (in Japanese)
    [16] ABAQUS Ins. ABAQUS analysis user's manual [M]. USA: Dassault Systemes Simulia Corp., 2014: 23.6.3-1-23.6.3-19.
    [17] Yao C, Nakashima M. Hysteretic behavior and strength capacity of shallowly embedded steel column bases with SFRCC slab [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(13): 1495-1513.
    [18] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67. Nie Jianguo, Wang Yuhang. Comparison study of constitutive model of concrete in Abaqus for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59-67. (in Chinese)
    [19] Lubliner J, Oliver J, Oller S. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(8): 299-329.
    [20] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [21] 张有佳, 李小军. 钢板混凝土组合墙轴压受力性能有限元分析[J]. 工程力学, 2016, 33(8): 84-92. Zhang Youjia, Li Xiaojun. Finite element analysis of axial compressive stress performance for steel plate reinforced concrete compound walls [J]. Engineering Mechanics, 2016, 33(8): 84-92. (in Chinese)
    [22] 日本建築学会. 鋼構造接合部設計指針[S]. 東京: 日本建築学会, 2012. Architectural Institute of Japan. Recommendation for design of connections in steel structures [S]. Tokyo: Architectural Institute of Japan, 2012. (in Japanese)
  • 期刊类型引用(3)

    1. 张慎,陈州,李霆,熊世树. 基于ABAQUS的木材本构模型及试验验证. 工程力学. 2025(03): 77-89 . 本站查看
    2. 陈志华,冯浩,刘佳迪. 轻钢-速生木自攻螺钉连接构件抗拔性能研究. 钢结构(中英文). 2023(09): 1-8 . 百度学术
    3. 吴荣宝,宋懿,徐一恺,赵展熠,朱一辛,王志强,杨庆增. 自攻螺钉在竹木混合正交胶合木中抗拔性能研究. 木材科学与技术. 2023(06): 61-67 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  288
  • HTML全文浏览量:  39
  • PDF下载量:  54
  • 被引次数: 10
出版历程
  • 收稿日期:  2016-10-11
  • 修回日期:  2017-05-07
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回