大倾角附螺旋列板倾斜圆柱涡激振动抑制分析

徐万海, 栾英森, 余杨, 覃雯琪

徐万海, 栾英森, 余杨, 覃雯琪. 大倾角附螺旋列板倾斜圆柱涡激振动抑制分析[J]. 工程力学, 2018, 35(1): 236-245. DOI: 10.6052/j.issn.1000-4750.2016.09.0719
引用本文: 徐万海, 栾英森, 余杨, 覃雯琪. 大倾角附螺旋列板倾斜圆柱涡激振动抑制分析[J]. 工程力学, 2018, 35(1): 236-245. DOI: 10.6052/j.issn.1000-4750.2016.09.0719
XU Wan-hai, LUAN Ying-sen, YU Yang, QIN Wen-qi. VORTEX-INDUCED VIBRATION SUPPRESSION FOR AN INCLINED FLEXIBLE STRAKED CYLINDER AT LARGE INCLINATION ANGLE[J]. Engineering Mechanics, 2018, 35(1): 236-245. DOI: 10.6052/j.issn.1000-4750.2016.09.0719
Citation: XU Wan-hai, LUAN Ying-sen, YU Yang, QIN Wen-qi. VORTEX-INDUCED VIBRATION SUPPRESSION FOR AN INCLINED FLEXIBLE STRAKED CYLINDER AT LARGE INCLINATION ANGLE[J]. Engineering Mechanics, 2018, 35(1): 236-245. DOI: 10.6052/j.issn.1000-4750.2016.09.0719

大倾角附螺旋列板倾斜圆柱涡激振动抑制分析

基金项目: 国家自然科学基金项目(51479135,51579175,51679167);国家重点基础研究计划-973计划项目(2014CB046801)
详细信息
    作者简介:

    栾英森(1992-),男,河北邢台人,硕士生,主要从事振动控制研究(E-mail:luanyingsen@tju.edu.cn);余杨(1988-),男,天津市人,讲师,博士,主要从事船舶海洋工程结构物设计制造研究(E-mail:yang.yu@tju.edu.cn);覃雯琪(1995-),女,广西河池宜州人,硕士生,主要从事流激振动研究(E-mail:qinwenqi@tju.edu.cn).

    通讯作者:

    徐万海(1981-),男,黑龙江齐齐哈尔人,副教授,博士,硕导,主要从事流激振动与振动控制研究(E-mail:xuwanhai@tju.edu.cn).

  • 中图分类号: TV312l;O328

VORTEX-INDUCED VIBRATION SUPPRESSION FOR AN INCLINED FLEXIBLE STRAKED CYLINDER AT LARGE INCLINATION ANGLE

  • 摘要: 在室内拖曳水池中开展大长径比(L/D=350),小质量比(m*=1.90)和大倾角(a=45 °)倾斜柔性圆柱涡激振动(VIV)抑制实验,观测螺旋列板对柔性圆柱VIV的抑制效果,并分析倾斜抑制圆柱涡激振动响应特性。选取海洋工程领域最优螺距/高度比组合(17.5D/0.25D)。通过拖车拖动模拟均匀来流,拖车速度范围为0.05 m/s~1.0 m/s,间隔为0.05 m/s,对应的雷诺数约为Re=800~16000。采用应变传感器测量结构横流向与顺流向的振动信息,并根据模态法处理实验数据。实验结果表明:螺旋列板对大倾角倾斜柔性圆柱VIV响应幅值和结构应变抑制效果不理想;同时观测到倾斜抑制圆柱涡激振动存在多模态的振动特征;并发现不相关原则(IP)不适用于倾斜抑制圆柱的涡激振动。
    Abstract: A series of tests on vortex-induced vibration (VIV) suppression for an inclined flexible straked cylinder with a high aspect ratio (L/D=350), low mass ratio (m*=1.90) and large inclination angle (a=45 °), were conducted in a towing tank. The effect of helical strakes with a pitch of 17.5D and a height of 0.25D on the VIV reduction of an inclined cylinder was investigated and discussed. The dynamic response features of an inclined straked cylinder undergoing VIV were studied. The uniform flow was generated by towing the cylinder model in still water along the tank from 0.05 m/s to 1.0 m/s with an interval of 0.05 m/s, the corresponding Reynolds number ranged from 800 to 16000. The strain signals in cross-flow (CF) and in-line (IL) directions were measured using strain gauges. The response displacement was obtained by a modal analysis approach. The experimental results indicated that the strain and displacement suppression efficiency of the inclined cylinder attached with helical strakes are not as well as that of a vertical straked cylinder. Moreover, the inclined flexible cylinder fitted with helical strakes exhibits regular CF and IL multi-modal VIV. The independence principle (IP) seems to be an unreasonable hypothesis for predicting VIV of an inclined flexible straked cylinder with large inclination angle.
  • [1] Chaplin J R, Bearman P W, Huera-Huarte F J, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of Fluids and Structures, 2005, 21(1):3-24.
    [2] Trim A D, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids and Structures, 2005, 21(3):335-361.
    [3] Lie H, Kaasen K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids and Structures, 2006, 22(4):557-575.
    [4] Xu J, He M, Bose N. Vortex modes and vortex-induced vibration of a long, flexible riser[J]. Ocean Engineering, 2009, 36(6):456-467.
    [5] Huera-Huarte F J, Bearman P W. Wake structures and vortex-induced vibrations of a long flexible cylinder-part 1:dynamic response[J]. Journal of Fluids and Structures, 2009, 25(6):969-990.
    [6] Huera-Huarte F J, Bearman P W. Wake structures and vortex-induced vibrations of a long flexible cylinder-part2:drag coefficients and vortex modes[J]. Journal of Fluids and Structures, 2009, 25(6):991-1006.
    [7] Lee L, Allen D. Vibration frequency and lock-in bandwidth of tensioned, flexible cylinders experiencing vortex shedding[J]. Journal of Fluids and Structures, 2010, 26(4):602-610.
    [8] Modarres-Sadeghi Y, Mukundan H, Dahl J M, et al. The effect of higher harmonic forces on fatigue life of marine risers[J]. Journal of Sound and Vibration, 2010, 329(1):43-55.
    [9] Song Jining, Lu Lin, Teng Bin, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow[J]. Ocean Engineering, 2011, 38(11):1308-1322.
    [10] Wu Xiaodong, Ge Fei, Hong Youshi. A review of recent studies on vortex-induced vibrations of long slender cylinders[J]. Journal of Fluids and Structures, 2012, 28(1):292-308.
    [11] Li Lee. The effect of structural stiffness variations on the onset of cross-flow VIV[J]. Journal of Fluids and Structures, 2013, 37(2):232-237.
    [12] Sanaati B, Kato N. Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow[J]. Journal of Marine Science and Technology, 2013, 18(2):247-261.
    [13] Zheng Haining, RachelE Price, Modarres-Sadeghi Y, et al. On fatigue damage of long flexible cylinders due to the higher harmonic force components and chaotic vortex-induced vibrations[J]. Ocean Engineering, 2014, 88:318-329.
    [14] Huera-Huarte F J, Bangash Z A, González L M. Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders[J]. Journal of Fluids and Structures, 2014, 48:81-92.
    [15] Seyed-Aghazadeh B, Budz C, Modarres-Sadeghi Y. The influence of higher harmonic flow forces on the response of a curved circular cylinder undergoing vortex-induced vibration[J]. Journal of Sound and Vibration, 2015, 353:395-406.
    [16] Song Leijian, Fu Shixiao, Cao Jing, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration[J]. Journal of Fluids and Structures, 2016, 63:325-350.
    [17] 宋芳, 林黎明, 林国灿. 圆柱涡激振动的结构-尾流振子耦合模型研究[J]. 力学学报, 2010, 42(3):357-365. Song Fang, Lin Liming, Lin Guocan. The study of vortex-induced vibrations by computation using coupling model of structure and wake oscillator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3):357-365. (in Chinese)
    [18] 陈伟民, 郑仲钦, 张立武, 等. 内波致剪切流作用下深海立管的涡激振动[J]. 工程力学, 2011, 28(12):250-256. Chen Weimin, Zheng Zhongqin, Zhang Liwu, et al. Vortex-induced vibration of deepwater flexible riser experiencing internal-wave-induced shear flow[J]. Engineering Mechanics, 2011, 28(12):250-256. (in Chinese).
    [19] 康庄, 贾鲁生. 圆柱体双自由度涡激振动轨迹的模型试验[J]. 力学学报, 2012, 44(6):970-980. Kang Zhuang, Jia Lusheng. An experiment investigation on VIV trajectories of a two degree free vibration cylinder[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6):970-980. (in Chinese)
    [20] 唐友刚, 邵卫东, 张杰, 等. 深海顶张力立管参激-涡激耦合振动响应分析[J]. 工程力学, 2013, 30(5):282-286. Tang Yougang, Shao Weidong, Zhang Jie, et al. Dynamic response analysis for coupled parametric vibration and vortex-induced vibration of top-tensioned riser in deep-sea[J]. Engineering Mechanics, 2013, 30(5):282-286. (in Chinese)
    [21] 王俊高, 付世晓, 许玉旺, 等. 正弦振荡来流下柔性立管涡激振动发展过程[J]. 力学学报, 2014, 46(2):173-182. Wang Jungao, Fu Shixiao, Xu Yuwang, et al. VIV developing process of a flexible cylinder under oscillatory flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):173-182. (in Chinese)
    [22] Quen L K, Abu A, Kato N, et al. Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser[J]. Applied Ocean Research, 2014, 44(3):82-91.
    [23] Gao Yun, Fu Shixiao, Ren Tie, et al. VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents[J]. Applied Ocean Research, 2015, 52:102-114.
    [24] Gao Yun, Yang Jiadong, Xiong Youming, et al. Experimental investigation of the effects of the coverage of helical strakes on the vortex-induced vibration response of a flexible riser[J]. Applied Ocean Research, 2016, 59:53-64.
    [25] Hanson A R. Vortex-shedding from yawed cylinders[J]. AIAA Journal, 1966, 4(4):738-740.
    [26] Van Atta C W. Experiments on vortex shedding from yawed circular cylinders[J]. AIAA Journal, 2012, 6(5):931-933.
    [27] Franzini G R, Gonçalves R T, Meneghini J R, et al. One and two degrees-of-freedom vortex-induced vibration experiments with yawed cylinders[J]. Journal of Fluids and Structures, 2013, 42(4):401-420.
    [28] Jain A, Modarres-Sadeghi Y. Vortex-induced vibrations of a flexibly mounted inclined cylinder[J]. Journal of Fluids and Structures, 2013, 43(6):28-40.
    [29] 徐万海, 马烨璇, 杜杰, 等. 45度大倾角倾斜柔性圆柱涡激振动不相关原则实验验证[J]. 振动与冲击, 2017, 36(7):177-183. Xu Wanhai, Ma Yexuan, Du Jie, et al. Experiments on the validity of independence principle applied to vortex-induced vibrations of a flexible cylinder inclined at 45°[J]. Journal of Vibration and Shock, 2017, 36(7):177-183. (in Chinese)
    [30] Han Qinghua, Ma Yexuan, Xu Wanhai, et al. Dynamic characteristics of an inclined flexible cylinder undergoing vortex-induced vibrations[J]. Journal of Sound and Vibration, 2017, 394:306-320.
    [31] Bourguet R, Triantafyllou M S. The onset of vortex-induced vibrations of a flexible cylinder at large inclination angle[J]. Journal of Fluid Mechanics, 2016, 809:111-134.
    [32] Zeinoddini M, Farhangmehr A, Seif M S, et al. Cross-flow vortex induced vibrations of inclined helically straked circular cylinders:An experimental study[J]. Journal of Fluids and Structures, 2015, 59:178-201.
    [33] Huera-Huarte F J. Multi-mode vortex-induced vibrations of a flexible circular cylinder[D]. University of London, 2006.
计量
  • 文章访问数:  276
  • HTML全文浏览量:  21
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-18
  • 修回日期:  2017-07-20
  • 刊出日期:  2018-01-24

目录

    /

    返回文章
    返回