钢纤维TRC薄板的常温及高温后弯曲力学性能

王激扬, 沈玲华, 徐世烺

王激扬, 沈玲华, 徐世烺. 钢纤维TRC薄板的常温及高温后弯曲力学性能[J]. 工程力学, 2016, 33(增刊): 6-10,17. DOI: 10.6052/j.issn.1000-4750.2015.05.S020
引用本文: 王激扬, 沈玲华, 徐世烺. 钢纤维TRC薄板的常温及高温后弯曲力学性能[J]. 工程力学, 2016, 33(增刊): 6-10,17. DOI: 10.6052/j.issn.1000-4750.2015.05.S020
WANG Ji-yang, SHEN Ling-hua, XU Shi-lang. BENDING BEHAVIOR OF TRC THIN-PLATES WITH SHORT STEEL FIBERS AT ROOM TEMPERATURE AND AFTER HIGH TEMPERATURE[J]. Engineering Mechanics, 2016, 33(增刊): 6-10,17. DOI: 10.6052/j.issn.1000-4750.2015.05.S020
Citation: WANG Ji-yang, SHEN Ling-hua, XU Shi-lang. BENDING BEHAVIOR OF TRC THIN-PLATES WITH SHORT STEEL FIBERS AT ROOM TEMPERATURE AND AFTER HIGH TEMPERATURE[J]. Engineering Mechanics, 2016, 33(增刊): 6-10,17. DOI: 10.6052/j.issn.1000-4750.2015.05.S020

钢纤维TRC薄板的常温及高温后弯曲力学性能

基金项目: "十二五"国家科技支撑计划项目(2012BAJ13B04)
详细信息
    作者简介:

    沈玲华(1988-),女,浙江德清人,博士生,从事纤维编织网增强混凝土材料与结构研究(E-mail:11112030@zju.edu.cn);徐世烺(1953-),男,陕西柞水人,教授,博士,长江学者,从事混凝土断裂理论、高性能建筑材料与结构研究(E-mail:slxu@zju.edu.cn).

    通讯作者:

    王激扬(1973-),男,浙江杭州人,副教授,博士,从事结构工程抗震与高性能材料研究(E-mail:kyotowang@zju.edu.cn).

  • 中图分类号: TU528.572

BENDING BEHAVIOR OF TRC THIN-PLATES WITH SHORT STEEL FIBERS AT ROOM TEMPERATURE AND AFTER HIGH TEMPERATURE

  • 摘要: 该文将短切钢纤维掺入纤维编织网增强混凝土(TRC)薄板中,通过四点弯曲试验,比较了短切钢纤维的长径比和掺量对TRC薄板常温下及高温后弯曲性能的影响。高温处理采用可实现程序控温的高温炉,按ISO834国际标准升温曲线进行加热,高温处理时间为0.5 h或1.0 h。结果表明,外掺钢纤维有助于提高TRC薄板常温下的承载力和初裂后刚度,钢纤维长径比对TRC薄板的承载力和变形能力影响不大,钢纤维掺量为1.0%的TRC薄板承载力提高了61%。随着高温作用时间变长,TRC薄板承载力大幅下降,连续贯穿裂缝数目大量减少,1.0 h高温后几乎丧失多缝开裂的破坏特征。无论在常温下或高温处理后,钢纤维体积掺量1.0%的TRC薄板均具有相对较好的力学性能。
    Abstract: This paper focuses on the textile reinforced concrete(TRC) thin-plates with the addition of short steel fibers. The influence of the length-diamond ratio and the volume content of short steel fiber on the bearing capacity of TRC thin-plates are investigated by means of four-point bending tests. ISO-834 International Standard Fire Curve is controlled by programmed temperature furnace, and the heating time is 0.5h or 1.0h respectively. The experimental results show that the addition of short steel fibers can improve the bending capacity and stiffness after the cracking of the TRC thin-plates. Length-diamond ratio of short steel fibers has little influence on the bearing capacity and deformability of the TRC thin-plates. The bending capacity of specimens with 1.0% steel fiber addition has increased by 61%. With longer heating temperature time, the bearing capacity of the TRC thin-plates decreases gradually, and the number of continuous crack reduces greatly. All the specimens almost lost the damage characteristics of multiple cracking after heated by 1.0h. Whether exposed to room temperature or high temperature, the TRC thin-plates with 1.0% steel fibers addition shows a certain residual mechanical property.
  • [1] Barhum R, Mechtcherine V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics, 2012, 92: 56-71.
    [2] Li Q H, Xu S L. Experimental research on mechanical performance of hybrid fiber reinforced cementitious composites with polyvinyl alcohol short fiber and carbon textile[J]. Journal of Composite Materials, 2011, 45(1): 5-28.
    [3] 尹世平. TRC基本力学性能及其增强钢筋混凝土梁受弯性能研究[D]. 大连: 大连理工大学, 2010. Yin Shiping. Research on TRC mechanical behavior and flexural performance of concrete beam reinforced with TRC[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [4] Barhum R, Mechtcherine V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete[J]. Materials and Structures, 2013, 46(4): 557-572.
    [5] 尹世平, 徐世烺. 提高纤维编织网保护层混凝土抗剥离能力的有效方法[J]. 建筑材料学报, 2010, 13(4): 468-473. Yin Shiping, Xu Shilang. Effect method to improve anti-flaking capacity of cover concrete to textile[J]. Journal of Building Materials, 2010, 13(4): 468-473. (in Chinese)
    [6] Silva F A, Butler M, Hempel S, et al. Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete[J]. Cement and Concrete Composites, 2014, 48: 26-34.
    [7] Rambo D A S, Silva F A, Filho R D T, et al. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete[J]. Materials and Design, 2015, 65: 24-33.
    [8] Xu S L, Shen L H, Wang J Y, et al. High temperature mechanical performance and micro interfacial adhesive failure of textile reinforced concrete thin-plate[J]. Journal of Zhejiang University Science A, 2014, 15(1): 31-38.
    [9] 赵顺波, 孙晓燕, 李长永, 等. 高强钢纤维混凝土弯曲韧性试验研究[J]. 建筑材料学报, 2003, 6(1): 95-99. Zhao Shunbo, Sun Xiaoyan, Li Changyong, et al. Flexural toughness of steel fiber reinforced high-strength concrete[J]. Journal of Building Materials, 2003, 6(1): 95-99. (in Chinese)
    [10] GB 50016-2006, 建筑设计防火规范[S]. 北京: 中国计划出版社, 2006. GB 50016-2006, Code of design on building fire protection and prevention[S]. Beijing: China Planning Press, 2006. (in Chinese)
    [11] Duval R, Kadri E H. Influence of silica fume on the workability and the compressive strength of high-performance concretes[J]. Cement Concrete Research, 1998: 28(4): 533-547.
  • 期刊类型引用(4)

    1. 王朝振,刘银涛,孙建鹏,周鹏,孙文武,张家驹. 微分法在有限元分析中的应用. 城市道桥与防洪. 2021(01): 172-175+18-19 . 百度学术
    2. 赵云,丁敏,韩盛柏,曹琼琼,蒋秀根. 考虑压-弯-扭耦合作用的开口截面杆件非线性静力模型. 中国农业大学学报. 2021(03): 115-123 . 百度学术
    3. 丁敏,石家华,王斌泰,王宏志,邓婷,罗双,蒋秀根. 解析型几何非线性圆拱单元. 工程力学. 2021(07): 1-8+29 . 本站查看
    4. 罗爱玲,景运革. 有限元法在扭转杆计算中的应用. 机电工程技术. 2021(11): 125-128 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  386
  • HTML全文浏览量:  45
  • PDF下载量:  68
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-04-30
  • 修回日期:  2016-02-17
  • 刊出日期:  2016-06-24

目录

    /

    返回文章
    返回