扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析

韦凯, 杨帆, 王平, 罗伟

韦凯, 杨帆, 王平, 罗伟. 扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析[J]. 工程力学, 2016, 33(9): 123-130,137. DOI: 10.6052/j.issn.1000-4750.2015.01.0071
引用本文: 韦凯, 杨帆, 王平, 罗伟. 扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析[J]. 工程力学, 2016, 33(9): 123-130,137. DOI: 10.6052/j.issn.1000-4750.2015.01.0071
WEI Kai, YANG Fan, WANG Ping, LUO Wei. SYMPLECTIC RANDOM VIBRATION ANALYSIS OF VEHICLE-TRACK COUPLED SYSTEM CONSIDERING FREQUENCY-DEPENDENT STIFFNESS OF RAIL PADS[J]. Engineering Mechanics, 2016, 33(9): 123-130,137. DOI: 10.6052/j.issn.1000-4750.2015.01.0071
Citation: WEI Kai, YANG Fan, WANG Ping, LUO Wei. SYMPLECTIC RANDOM VIBRATION ANALYSIS OF VEHICLE-TRACK COUPLED SYSTEM CONSIDERING FREQUENCY-DEPENDENT STIFFNESS OF RAIL PADS[J]. Engineering Mechanics, 2016, 33(9): 123-130,137. DOI: 10.6052/j.issn.1000-4750.2015.01.0071

扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析

基金项目: 国家自然科学基金高铁联合基金项目(U1434201,U1234201);国家杰出青年科学基金项目(51425804);国家青年科学基金项目(51008257,51008158);四川省科技支撑计划项目(2014GZ0003)
详细信息
    作者简介:

    杨帆(1987-),男,江苏淮安人,硕士生,从事轨道交通系统动力学研究(E-mail:yang_swjtu@163.com);王平(1969-),男,湖北宜昌人,教授,博士,从事铁路轨道安全理论研究(E-mail:wping@home.swjtu.edu.cn);罗伟(1991-),男,贵州铜仁人,硕士生,从事轨道结构工程研究(E-mail:657927429@qq.com).

    通讯作者:

    韦凯(1980-),男,山西临汾人,副研究员,博士后,从事轨道交通系统动力学研究(E-mail:wei_mike@163.com).

  • 中图分类号: U211.3

SYMPLECTIC RANDOM VIBRATION ANALYSIS OF VEHICLE-TRACK COUPLED SYSTEM CONSIDERING FREQUENCY-DEPENDENT STIFFNESS OF RAIL PADS

More Information
    Corresponding author:

    WEI Kai: 10.6052/j.issn.1000-4750.2015.01.0071

  • 摘要: 运用无穷周期子结构的辛数学方法与虚拟激励法,建立了车辆-轨道垂向耦合随机振动虚拟辛分析模型,并用以探讨扣件胶垫频变刚度对轮轨耦合系统随机振动的影响。研究结果表明:扣件胶垫频变刚度对车体垂向随机振动的影响可忽略不计,但却会改变转向架中高频的垂向随机振动幅值,同时还会显著提高轮对与钢轨的垂向随机振动最大功率峰与其第一主频;轮对垂向随机振动最大功率峰与其第一主频随着扣件胶垫刚度频变幅度或低频初始刚度的增大分别呈波浪式渐增与阶梯式上升的变化趋势;在铁路常用扣件胶垫刚度的变化范围内,轮对垂向随机振动最高功率峰的最大增幅是17.5倍,并且其第一主频的最大增量亦可高达40 Hz。因此,为精确预测车辆转向架、车轮及轮下系统的随机振动频域响应,需综合考虑扣件胶垫的低频初始刚度及其刚度频变幅度。
    Abstract: The Symplectic mathematics model of random vibration for a vehicle-track coupled system was established with Pseudo Excitation Method (PEM) and Symplectic Mathematics of infinitely periodic sub-structures. The model was used to explore the influence of the frequency-dependent stiffness of rail pads on the random vibration of a vehicle-track coupled system. The conclusions show that: the frequency-dependent stiffness of rail pads has little effect on the vertical random vibration of a vehicle body, yet alters the middle- and high-frequency vertical random vibration amplitudes of a vehicle bogie, and meanwhile significantly increases the power peak and the 1st dominant frequency of the vertical random vibration of both vehicle wheelset and steel rail; the variation of the power peak and the 1st dominant frequency of wheelset' vertical random vibration with the low-frequency initial stiffness of rail pads or the frequency-dependent extent of their stiffness appears the wavy gradual and the stepped increasing trend, respectively; In the stiffness scope of the commonly-used rail pads, the power peak of wheelset' vertical random vibration has the maximal increase of 17.5 times, and its 1st dominant frequency also has the biggest increment of 40 Hz. Thus, in order to accurately predict the frequency-domain characteristics of the random vibration of a vehicle bogie, of wheels and of the fundamental structure under wheels, it is necessary to comprehensively consider the low-frequency initial stiffness of rail pads and the variation of their stiffness with frequencies.
  • [1] Chu K H, Garg V K, Wiriyachai A. Dynamic interaction of railway train and bridges[J]. Vehicle System Dynamics, 1980, 9(4): 207-236.
    [2] 杜新光. 轨道车辆-结构动态耦合系统的数值模拟方法及应用[D]. 上海: 上海交通大学, 2010. Du Xinguang. Numerical simulation method and application for the dynamic couple system of rail vehicle and the structure[D]. Shanghai: Shanghai Jiao tong University, 2010. (in Chinese)
    [3] 张斌, 雷晓燕. 基于车辆-轨道单元的无砟轨道动力特性有限元分析[J]. 铁道学报, 2011, 33(7): 78-85. Zhang Bin, Lei Xiaoyan. Analysis on dynamic behavior of ballastless track based on vehicle and track elements with finite element method[J]. Journal of the China Railway Society, 2011, 33(7): 78-85. (in Chinese)
    [4] 边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. 工程力学, 2015, 32(5): 57-63. Bian Xuecheng, Li Wei, Li Gongyu, et al. Three-dimensional discrete element analysis of railway ballast's shear process based on particles' real geometry[J]. Engineering Mechanics, 2015, 32(5): 57-63. (in Chinese)
    [5] Kalker J J. A Fast Algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
    [6] Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[C]. In: Proceedings 8th IAVSD Symposium, MIT, Cambridge, 1983: 591-605.
    [7] 赵鑫, 温泽峰, 王衡禹. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7. Zhao Xin, Wen Zefeng, Wang Hengyu. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7. (in Chinese)
    [8] Remington P J. Wheel/Rail Rolling Noise, I: Theoretical analysis[J]. The Journal of the Acoustical Society of America, 1987, 81(6): 1805-1823.
    [9] Xu Y L, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in cross winds[J]. Engineering Structures, 2004, 26(10): 1389-1406.
    [10] 李成辉, 万复光. 轨道结构随机振动[J]. 铁道学报, 1998, 20(3): 97-101. Li Chenghui, Wan Fuguang. Random vibration of track structure[J]. Journal of the China Railway Society, 1998, 20(3): 97-101. (in Chinese)
    [11] 翟婉明. 车辆-轨道耦合动力学[M]. 第3版. 北京: 科学出版社, 2007: 117-118. Zhai Wanming. Vehicle-track coupling dynamics[M]. 3rd ed. Beijing: Science Press, 2007: 117-118. (in Chinese)
    [12] 刘学毅, 王平. 车辆-轨道-路基系统动力学[M]. 成都: 西南交通大学出版社, 2010: 30-33. Liu Xueyi, Wang Ping. Vehicle-track-subgrade coupled dynamics[M]. Chengdu: Southwest Jiaotong University Press, 2010: 30-33. (in Chinese)
    [13] 张昀青. 地铁列车振动响应及轨道结构参数影响分析[D]. 北京: 北京交通大学, 2004. Zhang Yunqing. Study on the ground vibration due to metro trains and analysis of the effect on track structure parameters[D]. Beijing: Beijing Jiaotong University, 2004. (in Chinese)
    [14] Lu F, Kennedy D, William F W, Lin J H. Symplectic analysis of vertical random vibration for coupled vehicle-track systems[J]. Journal of Sound and Vibration, 2008, 317(1/2): 236-249.
    [15] Jones D I G. Handbook of viscoelastic vibration damping[M]. New York: John Wiley and Sons, 2001: 63-73.
    [16] Carrascal I A, Casado J A, Polanco J A, et al. Dynamic behavior of railway fastening setting pads[J]. Engineering Failure Analysis, 2007, 14(2): 364-373.
    [17] Luo Y, Liu Y, Yin H P. Numerical investigation of nonlinear of properties of a rubber absorber in rail fastening systems[J]. International Journal of Mechanical Sciences, 2013, 69: 107-113.
    [18] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006: 70-75. Zhong Wanxie. Symplectic solution methodology in applied mechanics[M]. Beijing: Higher Education Press, 2006: 70-75. (in Chinese)
    [19] 林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004: 42-58. Lin Jiahao, Zhang Yahui. Pseudo excitation of random vibration[M]. Beijing: Science Press, 2004: 42-58. (in Chinese)
    [20] Thompson D J, Verheij J W. The dynamic behaviour of rail fasteners at high frequencies[J]. Applied Acoustics, 1997, 52(1): 1-17.
    [21] Fenander A. Frequency dependent stiffness and damping of railpads[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1997, 211(1): 51-62.
    [22] Maes J, Sol H, Guillaume P. Measurements of the dynamic railpad properties[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 557-565.
  • 期刊类型引用(10)

    1. 薛富春,张建民,马建林,许振浩. 运行条件下车辆-轨道-路基-地基强耦合大系统振动变形精细化分析方法. 应用基础与工程科学学报. 2023(01): 81-102 . 百度学术
    2. 白彦博,和振兴,贠剑峰,张鹏,王志璇. 空气阻尼对网孔式弹性垫板动力学特性的影响研究. 振动与冲击. 2022(14): 24-32 . 百度学术
    3. 和振兴,白彦博,包能能,贠剑峰,石广田. 空气阻尼网孔式弹性垫减振单元理论模型研究. 振动与冲击. 2022(23): 94-101 . 百度学术
    4. 刘林芽,卢沛君,秦佳良. 基于扣件FVMP模型的车-轨耦合随机振动分析. 铁道学报. 2019(05): 93-100 . 百度学术
    5. 韦凯,胡小刚,赵泽明,梁迎春. 地下铁道环境振动快速预测及可视化研究. 铁道建筑. 2018(03): 50-53 . 百度学术
    6. 孙善超,刘金朝,王卫东,刘小明,魏悦广. 高速铁路轮轨作用力的全息辨识模型. 工程力学. 2018(11): 190-196 . 本站查看
    7. 杨麒陆,豆银玲,王平. 地铁提速对减振垫浮置板轨道振动特征的影响分析. 铁道标准设计. 2017(10): 11-15 . 百度学术
    8. 杨麒陆,李翔,豆银玲,葛辉,王平. 时速120 km地铁多种减振轨道结构振动特征分析. 铁道建筑. 2017(07): 139-143 . 百度学术
    9. 王平,杨帆,韦凯. 扣件胶垫刚度频变的车-线-隧垂向耦合随机振动虚拟辛分析. 西南交通大学学报. 2017(02): 209-215 . 百度学术
    10. 韦凯,杨帆,王平,张攀. 扣件胶垫刚度频变的车辆-轨道耦合时变随机振动扩展辛分析. 工程力学. 2016(12): 232-240 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  457
  • HTML全文浏览量:  30
  • PDF下载量:  154
  • 被引次数: 18
出版历程
  • 收稿日期:  2015-01-25
  • 修回日期:  2015-09-14
  • 刊出日期:  2016-09-24

目录

    /

    返回文章
    返回