STOCHASTIC FINITE ELEMENT METHOD FOR ANALYZING NONLINEAR SHELL STRUCTURES WITH RANDOM PARAMETERS
-
摘要: 采用摄动随机有限元法研究了具有随机参数的板壳结构大挠度动力响应问题。基于Mindlin-Reissner板理论,采用全量Lagrangian法推导了具有板壳结构的大变形、大转动的动力响应有限元列式;通过基于等参变换的局部模型对随机场进行离散,结合摄动技术,建立了基于摄动技术的增量形式的随机有限元列式,计算结果与Monte-Carlo法相比较表明了该方法的有效性和精确性。通过该方法,为进一步进行结构可靠性分析提供了依据和方便。Abstract: Several algorithms were proposed for the development of a framework of the perturbation based stochastic finite element method (PSFEM) for analyzing nonlinear shell structures with random parameters. For this purpose, based on the stochastic virtual work principle, some algorithms and a framework related to SFEM were studied. An isoperimetric local average method was used to discretize the random fields. A comparison with Monte-Carlo simulation method shows that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
-
-
[1] Shinozuka M, Astill J. Random eigenvalue Problems in structural mechanics [J]. AIAA Journal, 1972, 10(4): 456―462. [2] [2]Combou B. Application of first order uncertainty analysis in the finite element method in linear-elasticity [C]// Proceedings of the 2nd International Conference on Applications of Statistics and Probability to Soil and Structural Engineering. London, 1975: 67―68. [3] [3]Handa K, Anderson K. Application of finite element methods in the statistical analysis of structures [C]// Proceedings of the 3rd International Conference on Structural Safety and Reliability. 1981: 409―417. [4] [4]Marcin K. Perturbation-based stochastic finite element method using polynomial response function for the elastic beams [J]. Mechanics Research Communications, 2009, 36(3): 381―390. [5] [5]Marcin K. Generalized stochastic perturbation technique in engineering computations [J]. Mathematical and Computer Modelling, 2010, 51(3/4): 272―285. [6] [6]Ioannis D, Zhan K. Perturbation-based stochastic FE analysis and robust design of inelastic deformation processes [J]. Computer Methods in Applied Mechanics Engineering, 2006, 195(19/20/21/22): 2231―2251. [7] [7]Ghanem R G, Spanos P D. Stochastic finite element: A spectral approach [M]. Revised Edition. New York: Springer-Verlag, 2003. [8] [8]George Stefanou. The stochastic finite element method: Past, present and future [J]. Computer Methods in Applied Mechanics Engineering, 2009, 198(9/10/11/12): 1031―1051. [9] [9]雷震宇, 陈虬. 板壳结构动力响应的随机有限元分析[J]. 工程力学, 1999, 85(增刊): 437―477. [10] Lei Zhenyu, Chen Qiu. Stochastic finite element method analysis of dynamic response of shell structure [J]. Engineering Mechanics, 1999, 85(Suppl): 437― 477. (in Chinese) [11] [10]Chang T P, Liu M F, Chang H C. Finite element analysis of nonlinear shell structures with uncertain material property [J]. Thin-Walled Structures, 2008, 46(10): 1055―1065. -
期刊类型引用(2)
1. 何文福,曾一峰,许浩,刘文光,冯德民. 锥形非固结隔震支座理论模型参数试验研究及其结构地震响应分析. 工程力学. 2020(05): 217-227 . 本站查看
2. 郭光玲. 陕南村镇住宅结构体系抗震能力评价研究——以汉中市留坝县为例. 震灾防御技术. 2020(01): 56-66 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 309
- HTML全文浏览量: 13
- PDF下载量: 53
- 被引次数: 9