Citation: | DONG Zhao-xian, SUN Zhi-guo, LI Hong-nan, WANG Dong-sheng, SI Bing-jun. ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD[J]. Engineering Mechanics, 2023, 40(10): 154-168. DOI: 10.6052/j.issn.1000-4750.2022.01.0083 |
[1] |
孙治国, 王东升, 司炳君, 等. 采用预应力筋进行RC桥墩地震损伤控制的试验研究[J]. 土木工程学报, 2014, 47(1): 107 − 116.
SUN Zhiguo, WANG Dongsheng, SI Bingjun, et al. Experimental research on the seismic damage control techniques for RC bridge piers by using prestressing tendons [J]. China Civil Engineering Journal, 2014, 47(1): 107 − 116. (in Chinese)
|
[2] |
司炳君, 谷明洋, 孙治国. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10): 1 − 11. doi: 10.6052/j.issn.1000-4750.2016.05.0376
SI Bingjun, GU Mingyang, SUN Zhiguo. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions [J]. Engineering Mechanics, 2017, 34(10): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0376
|
[3] |
曾武华, 卓卫东, 王东升. RC桥墩残余位移指标影响因素分析及贝叶斯估计[J]. 振动与冲击, 2021, 40(19): 145 − 150. doi: 10.13465/j.cnki.jvs.2021.19.018
ZENG Wuhua, ZHUO Weidong, WANG Dongsheng. Influence factors analysis and Bayesian estimation for residual displacement index of RC pier [J]. Journal of Vibration and Shock, 2021, 40(19): 145 − 150. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.19.018
|
[4] |
JI D, WEN W, ZHAI C, et al. Residual displacement ratios of SDOF systems subjected to ground motions recorded on soft soils [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 331 − 335. doi: 10.1016/j.soildyn.2018.09.001
|
[5] |
FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. I: Residual inclination of reinforced concrete piers [J]. Journal of Bridge Engineering, ASCE, 2005, 10(1): 45 − 53. doi: 10.1061/(ASCE)1084-0702(2005)10:1(45)
|
[6] |
MACRAE G A, KAWASHIMA K. Post-earthquake residual displacement of bilinear oscillators [J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7): 701 − 716. doi: 10.1002/(SICI)1096-9845(199707)26:7<701::AID-EQE671>3.0.CO;2-I
|
[7] |
RUIZ-GARCÍA J, MIRANDA E. Residual displacement ratios for assessment of existing structures [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(3): 315 − 336. doi: 10.1002/eqe.523
|
[8] |
SAIIDI M S, ARDAKANI S N S. An analytical study of residual displacements in RC bridge columns subjected to near-fault earthquakes [J]. Bridge Structures, 2012, 8(1): 35 − 45. doi: 10.3233/BRS-2012-0036
|
[9] |
CHOI H, SAIIDI M S, SOMERVILLE P, et al. Experimental study of reinforced concrete bridge columns subjected to near-fault ground motions [J]. ACI Structural Journal, 2010, 107(1): 3 − 12.
|
[10] |
PHAN V, SAIIDI M S, ANDERSON J, et al. Near-fault ground motion effects on reinforced concrete bridge columns [J]. Journal of Structural Engineering, ASCE, 2007, 133(7): 982 − 989. doi: 10.1061/(ASCE)0733-9445(2007)133:7(982)
|
[11] |
ZATAR W A, MUTSUYOSHI H. Residual displacements of concrete bridge piers subjected to near field earthquakes [J]. ACI Structural Journal, 2002, 99(6): 740 − 749.
|
[12] |
ARDAKANI S M S, SAIIDI M S. Simple method to estimate residual displacement in concrete bridge columns under near-fault earthquake motions [J]. Engineering Structures, 2018, 176: 208 − 219. doi: 10.1016/j.engstruct.2018.08.083
|
[13] |
艾庆华, 王东升, 李宏男, 等. 基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J]. 工程力学, 2009, 26(4): 158 − 166.
AI Qinghua, WANG Dongsheng, LI Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model [J]. Engineering Mechanics, 2009, 26(4): 158 − 166. (in Chinese)
|
[14] |
陈乐生. 汶川地震公路震害调查: 桥梁 [M]. 北京: 人民交通出版社, 2012.
CHEN Lesheng. Report on highways’ damage in the Wenchuan earthquake: Bridge [M]. Beijing: China Communications Press, 2012. (in Chinese)
|
[15] |
GANEV T, YAMAZAKI F, ISHIZAKI H, et al. Response analysis of the Higashi–Kobe Bridge and surrounding soil in the 1995 Hyogoken–Nanbu Earthquake [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(6): 557 − 576. doi: 10.1002/(SICI)1096-9845(199806)27:6<557::AID-EQE742>3.0.CO;2-Z
|
[16] |
孙治国, 刘亚明, 司炳君. 基于OpenSees的桩-土-桥墩相互作用非线性数值分析模型[J]. 世界地震工程, 2018, 34(4): 67 − 74.
SUN Zhiguo, LIU Yaming, SI Bingjun, et al. Nonlinear analysis model for pile-soil-pier interaction based on OpenSees platform [J]. World Earthquake Engineering, 2018, 34(4): 67 − 74. (in Chinese)
|
[17] |
YOSHIDA N, TAZOH T, WAKAMATSU K, et al. Causes of Showa bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony [J]. Soil and Foundation, 2011, 47(6): 1075 − 1087.
|
[18] |
CUBRINOVSKI M, RHODES A, NTRITSOS N, et al. System response of liquefiable deposits [J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 212 − 229. doi: 10.1016/j.soildyn.2018.05.013
|
[19] |
CUBRINOVSKI M, ROBINSON K. Lateral spreading: Evidence and interpretation from the 2010–2011 Christchurch earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2016, 91: 187 − 201. doi: 10.1016/j.soildyn.2016.09.045
|
[20] |
ROBINSON K, CUBRINOVSKI M, BRADLEY B A. Lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes [J]. International Journal of Geotechnical Engineering, 2014, 8(4): 441 − 448. doi: 10.1179/1939787913Y.0000000032
|
[21] |
KUTTER B L, GAJAN S, MANDA K K, et al. Effects of layer thickness and density on settlement and lateral spreading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 603 − 614. doi: 10.1061/(ASCE)1090-0241(2004)130:6(603)
|
[22] |
BOULANGER R W, KAMAI R, ZIOTOPOULOU K. Liquefaction induced strength loss and deformation: Simulation and design [J]. Bulletin of Earthquake Engineering, 2014, 12(3): 1107 − 1128. doi: 10.1007/s10518-013-9549-x
|
[23] |
张鑫磊, 衣睿博, 纪展鹏, 等. 循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征[J]. 工程力学, 2023, 40(2): 157 − 167. doi: 10.6052/j.issn.1000-4750.2021.08.0648
ZHANG Xinlei, YI Ruibo, JI Zhanpeng, et al. Property evelution and liquefaction stage characteristics of saturated sand under cyclic loading [J]. Engineering Mechanics, 2023, 40(2): 157 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0648
|
[24] |
IDRISS I M, BOULANGER R W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2-4): 115 − 130. doi: 10.1016/j.soildyn.2004.11.023
|
[25] |
BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic Soil-Pile-Structure interaction experiments and analyses [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750 − 759. doi: 10.1061/(ASCE)1090-0241(1999)125:9(750)
|
[26] |
BRANDENBERG S J, ZHAO M, BOULANGER R W, et al. P-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1262 − 1274. doi: 10.1061/(ASCE)GT.1943-5606.0000847
|
[27] |
BRANDENBERG S J, BOULANGER R W, KUTTER B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378 − 1391.
|
[28] |
陈志雄, 李康银, 王成龙, 等. 液化侧向扩展场地刚性排水管桩群桩振动台试验研究[J]. 工程力学, 2022, 39(9): 141 − 152. doi: 10.6052/j.issn.1000-4750.2021.05.0374
CHEN Zhixiong, LI Kangyin, WANG Chenglong. Table Tests on rigid-drainage pipe pile groups at liquefied laterly spreading site [J]. Engineering Mechanics, 2022, 39(9): 141 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0374
|
[29] |
邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152 − 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559
ZOU Youxue, WANG Rui, ZHANG Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Machanics, 2019, 36(10): 152 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559
|
[30] |
BRADLEY B A, CUBRINOVSKI M, HASKELL J. Probabilistic pseudo-static analysis of pile foundations in liquefiable soils [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1414 − 1425. doi: 10.1016/j.soildyn.2011.05.018
|
[31] |
KHOSRAVIFAR A, BOULANGER R W, KUNNATH S K. Effects of liquefaction on inelastic demands on extended pile shafts [J]. Earthquake Spectra, 2014, 30(4): 1749 − 1773. doi: 10.1193/032412EQS105M
|
[32] |
WANG X, LUO F, SU Z, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization [J]. International Journal of Geomechanics, 2017, 17(6): 1 − 11.
|
[33] |
王晓伟, 叶爱君, 李闯. 可液化河谷场地不同形式梁式桥的地震反应[J]. 同济大学学报:自然科学版, 2018, 46(6): 1 − 9.
WANG Xiaowei, YE Aijun, LI Chuang. Seismic response of girder bridges in liquefiable river valleys with different structural configurations [J]. Journal of Tongji University (Natural Science), 2018, 46(6): 1 − 9. (in Chinese)
|
[34] |
王晓伟, 李闯, 叶爱君, 等. 可液化河谷场地简支梁桥的地震反应分析[J]. 中国公路学报, 2016, 29(4): 85 − 95. doi: 10.3969/j.issn.1001-7372.2016.04.011
WANG Xiaowei, LI Chuang, YE Aijun, et al. Seismic demand analysis of a simply supported girder bridge in liquefied or non-liquefied ground [J]. China Journal of Highway and Transport, 2016, 29(4): 85 − 95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.04.011
|
[35] |
WANG X, YE A, JI B. Fragility-based sensitivity analysis on the seismic performance of pile-group-supported bridges in liquefiable ground undergoing scour potentials [J]. Engineering Structures, 2019, 198(1): 1 − 15.
|
[36] |
王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132 − 140. doi: 10.6052/j.issn.1000-4750.2015.01.0022
WANG Xiaowei, YE Aijun, LUO Fuyuan. Seismic response sensitivity analysis of pile supported bridge structure in liquefiable ground [J]. Engineering Mechanics, 2016, 33(8): 132 − 140. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0022
|
[37] |
WILSON D W, BOULANGER R W, KUTTER B L. Soil-pile-superstructure interaction at soft or liquefiable soil sites-Centrifuge data report for CSP3 [R]. Davis: University of California at Davis, 1997.
|
[38] |
API RP 2A-WSD, Recommended practice for planning, designing, and constructing fixed offshore platform-working stress design [S]. Washington, D.C.: American Petroleum Institute, 2014.
|
[39] |
BRANDENBERG S J. Behavior of pile foundations in liquefied and laterally spreading ground [D]. Davis, CA: University of California, Davis, 2005.
|
[40] |
王震. 自复位预制拼装UHPC空心墩抗震性能及设计方法研究[D]. 南京: 东南大学, 2018.
WANG Zhen. Research on seismic performance and design method of self-centering precast segmental UHPC hollow bridge piers [D]. Nanjing: Southeast University, 2018. (in Chinese)
|
1. |
王晓伟,钱晋,叶爱君,王靖程,杨光怡. 砂土场地桩柱式墩桥梁桩身地震需求简化计算方法. 工程力学. 2024(12): 150-157 .
![]() |