DONG Zhao-xian, SUN Zhi-guo, LI Hong-nan, WANG Dong-sheng, SI Bing-jun. ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD[J]. Engineering Mechanics, 2023, 40(10): 154-168. DOI: 10.6052/j.issn.1000-4750.2022.01.0083
Citation: DONG Zhao-xian, SUN Zhi-guo, LI Hong-nan, WANG Dong-sheng, SI Bing-jun. ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD[J]. Engineering Mechanics, 2023, 40(10): 154-168. DOI: 10.6052/j.issn.1000-4750.2022.01.0083

ANALYSIS ON RESIDUAL DISPLACEMENT OF REINFORCED CONCRETE BRIDGE PIERS STANDING IN LIQUEFIABLE FIELD

More Information
  • Received Date: January 14, 2022
  • Revised Date: June 10, 2022
  • Available Online: June 23, 2022
  • To study the influence mechanism of site liquefaction on Reinforced Concrete (RC) pier residual displacement, the numerical simulation method of liquefied site-structure upon OpenSees finite element platform was described at first, and the reliability was verified by comparing with centrifuge test results. Then based on a practical extended pile-shaft, a liquefied site-RC pier simulation method was developed, the nonliquefied site-pile-RC pier numerical model (model 1) and liquefied site-pile-RC pier numerical model (model 2) were established, near-fault ground motions were inputted two models for dynamic time history analysis. Model 2 site liquefaction was discussed firstly, then site displacements, pile displacements, pile maximum curvature ductility coefficients, pier residual displacement and variation of pier residual displacement with peak ground acceleration (PGA) were compared between Model 1 and Model 2. The results show that liquefaction is different along depths in model 2 site during the earthquake. The upper-middle soil reaches a complete liquefaction state, soil loses most horizontal ultimate resistance, and pile lateral constraint is seriously reduced. Liquefaction results in a significant increment in liquefied site residual displacement post-earthquake, and pile top residual displacement may increase due to the enhanced post-earthquake constraints of pile body. The pile plastic deformation increases significantly, maximum plastic deformation position of pile downward obviously, and pile plastic deformation zone expands, which leads to more serious plastic damage to pile and further increases pile top residual displacement. The increase of residual displacement post-earthquake in liquefaction site and the reduction of pile constraint during the earthquake lead to an increment of pile top residual displacement, which is amplified by pier and transferred to pier top, causing increase of pier top residual displacement. The pier residual displacement in liquefied site is significantly faster than that in non-liquefied site with the increase of PGA, which may be due to the deepening of site liquefaction with the increase of PGA.
  • [1]
    孙治国, 王东升, 司炳君, 等. 采用预应力筋进行RC桥墩地震损伤控制的试验研究[J]. 土木工程学报, 2014, 47(1): 107 − 116.

    SUN Zhiguo, WANG Dongsheng, SI Bingjun, et al. Experimental research on the seismic damage control techniques for RC bridge piers by using prestressing tendons [J]. China Civil Engineering Journal, 2014, 47(1): 107 − 116. (in Chinese)
    [2]
    司炳君, 谷明洋, 孙治国. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10): 1 − 11. doi: 10.6052/j.issn.1000-4750.2016.05.0376

    SI Bingjun, GU Mingyang, SUN Zhiguo. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions [J]. Engineering Mechanics, 2017, 34(10): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0376
    [3]
    曾武华, 卓卫东, 王东升. RC桥墩残余位移指标影响因素分析及贝叶斯估计[J]. 振动与冲击, 2021, 40(19): 145 − 150. doi: 10.13465/j.cnki.jvs.2021.19.018

    ZENG Wuhua, ZHUO Weidong, WANG Dongsheng. Influence factors analysis and Bayesian estimation for residual displacement index of RC pier [J]. Journal of Vibration and Shock, 2021, 40(19): 145 − 150. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.19.018
    [4]
    JI D, WEN W, ZHAI C, et al. Residual displacement ratios of SDOF systems subjected to ground motions recorded on soft soils [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 331 − 335. doi: 10.1016/j.soildyn.2018.09.001
    [5]
    FUJINO Y, HASHIMOTO S, ABE M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. I: Residual inclination of reinforced concrete piers [J]. Journal of Bridge Engineering, ASCE, 2005, 10(1): 45 − 53. doi: 10.1061/(ASCE)1084-0702(2005)10:1(45)
    [6]
    MACRAE G A, KAWASHIMA K. Post-earthquake residual displacement of bilinear oscillators [J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7): 701 − 716. doi: 10.1002/(SICI)1096-9845(199707)26:7<701::AID-EQE671>3.0.CO;2-I
    [7]
    RUIZ-GARCÍA J, MIRANDA E. Residual displacement ratios for assessment of existing structures [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(3): 315 − 336. doi: 10.1002/eqe.523
    [8]
    SAIIDI M S, ARDAKANI S N S. An analytical study of residual displacements in RC bridge columns subjected to near-fault earthquakes [J]. Bridge Structures, 2012, 8(1): 35 − 45. doi: 10.3233/BRS-2012-0036
    [9]
    CHOI H, SAIIDI M S, SOMERVILLE P, et al. Experimental study of reinforced concrete bridge columns subjected to near-fault ground motions [J]. ACI Structural Journal, 2010, 107(1): 3 − 12.
    [10]
    PHAN V, SAIIDI M S, ANDERSON J, et al. Near-fault ground motion effects on reinforced concrete bridge columns [J]. Journal of Structural Engineering, ASCE, 2007, 133(7): 982 − 989. doi: 10.1061/(ASCE)0733-9445(2007)133:7(982)
    [11]
    ZATAR W A, MUTSUYOSHI H. Residual displacements of concrete bridge piers subjected to near field earthquakes [J]. ACI Structural Journal, 2002, 99(6): 740 − 749.
    [12]
    ARDAKANI S M S, SAIIDI M S. Simple method to estimate residual displacement in concrete bridge columns under near-fault earthquake motions [J]. Engineering Structures, 2018, 176: 208 − 219. doi: 10.1016/j.engstruct.2018.08.083
    [13]
    艾庆华, 王东升, 李宏男, 等. 基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J]. 工程力学, 2009, 26(4): 158 − 166.

    AI Qinghua, WANG Dongsheng, LI Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model [J]. Engineering Mechanics, 2009, 26(4): 158 − 166. (in Chinese)
    [14]
    陈乐生. 汶川地震公路震害调查: 桥梁 [M]. 北京: 人民交通出版社, 2012.

    CHEN Lesheng. Report on highways’ damage in the Wenchuan earthquake: Bridge [M]. Beijing: China Communications Press, 2012. (in Chinese)
    [15]
    GANEV T, YAMAZAKI F, ISHIZAKI H, et al. Response analysis of the Higashi–Kobe Bridge and surrounding soil in the 1995 Hyogoken–Nanbu Earthquake [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(6): 557 − 576. doi: 10.1002/(SICI)1096-9845(199806)27:6<557::AID-EQE742>3.0.CO;2-Z
    [16]
    孙治国, 刘亚明, 司炳君. 基于OpenSees的桩-土-桥墩相互作用非线性数值分析模型[J]. 世界地震工程, 2018, 34(4): 67 − 74.

    SUN Zhiguo, LIU Yaming, SI Bingjun, et al. Nonlinear analysis model for pile-soil-pier interaction based on OpenSees platform [J]. World Earthquake Engineering, 2018, 34(4): 67 − 74. (in Chinese)
    [17]
    YOSHIDA N, TAZOH T, WAKAMATSU K, et al. Causes of Showa bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony [J]. Soil and Foundation, 2011, 47(6): 1075 − 1087.
    [18]
    CUBRINOVSKI M, RHODES A, NTRITSOS N, et al. System response of liquefiable deposits [J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 212 − 229. doi: 10.1016/j.soildyn.2018.05.013
    [19]
    CUBRINOVSKI M, ROBINSON K. Lateral spreading: Evidence and interpretation from the 2010–2011 Christchurch earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2016, 91: 187 − 201. doi: 10.1016/j.soildyn.2016.09.045
    [20]
    ROBINSON K, CUBRINOVSKI M, BRADLEY B A. Lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes [J]. International Journal of Geotechnical Engineering, 2014, 8(4): 441 − 448. doi: 10.1179/1939787913Y.0000000032
    [21]
    KUTTER B L, GAJAN S, MANDA K K, et al. Effects of layer thickness and density on settlement and lateral spreading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 603 − 614. doi: 10.1061/(ASCE)1090-0241(2004)130:6(603)
    [22]
    BOULANGER R W, KAMAI R, ZIOTOPOULOU K. Liquefaction induced strength loss and deformation: Simulation and design [J]. Bulletin of Earthquake Engineering, 2014, 12(3): 1107 − 1128. doi: 10.1007/s10518-013-9549-x
    [23]
    张鑫磊, 衣睿博, 纪展鹏, 等. 循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征[J]. 工程力学, 2023, 40(2): 157 − 167. doi: 10.6052/j.issn.1000-4750.2021.08.0648

    ZHANG Xinlei, YI Ruibo, JI Zhanpeng, et al. Property evelution and liquefaction stage characteristics of saturated sand under cyclic loading [J]. Engineering Mechanics, 2023, 40(2): 157 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0648
    [24]
    IDRISS I M, BOULANGER R W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2-4): 115 − 130. doi: 10.1016/j.soildyn.2004.11.023
    [25]
    BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic Soil-Pile-Structure interaction experiments and analyses [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750 − 759. doi: 10.1061/(ASCE)1090-0241(1999)125:9(750)
    [26]
    BRANDENBERG S J, ZHAO M, BOULANGER R W, et al. P-y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1262 − 1274. doi: 10.1061/(ASCE)GT.1943-5606.0000847
    [27]
    BRANDENBERG S J, BOULANGER R W, KUTTER B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378 − 1391.
    [28]
    陈志雄, 李康银, 王成龙, 等. 液化侧向扩展场地刚性排水管桩群桩振动台试验研究[J]. 工程力学, 2022, 39(9): 141 − 152. doi: 10.6052/j.issn.1000-4750.2021.05.0374

    CHEN Zhixiong, LI Kangyin, WANG Chenglong. Table Tests on rigid-drainage pipe pile groups at liquefied laterly spreading site [J]. Engineering Mechanics, 2022, 39(9): 141 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0374
    [29]
    邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152 − 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559

    ZOU Youxue, WANG Rui, ZHANG Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Machanics, 2019, 36(10): 152 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559
    [30]
    BRADLEY B A, CUBRINOVSKI M, HASKELL J. Probabilistic pseudo-static analysis of pile foundations in liquefiable soils [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1414 − 1425. doi: 10.1016/j.soildyn.2011.05.018
    [31]
    KHOSRAVIFAR A, BOULANGER R W, KUNNATH S K. Effects of liquefaction on inelastic demands on extended pile shafts [J]. Earthquake Spectra, 2014, 30(4): 1749 − 1773. doi: 10.1193/032412EQS105M
    [32]
    WANG X, LUO F, SU Z, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization [J]. International Journal of Geomechanics, 2017, 17(6): 1 − 11.
    [33]
    王晓伟, 叶爱君, 李闯. 可液化河谷场地不同形式梁式桥的地震反应[J]. 同济大学学报:自然科学版, 2018, 46(6): 1 − 9.

    WANG Xiaowei, YE Aijun, LI Chuang. Seismic response of girder bridges in liquefiable river valleys with different structural configurations [J]. Journal of Tongji University (Natural Science), 2018, 46(6): 1 − 9. (in Chinese)
    [34]
    王晓伟, 李闯, 叶爱君, 等. 可液化河谷场地简支梁桥的地震反应分析[J]. 中国公路学报, 2016, 29(4): 85 − 95. doi: 10.3969/j.issn.1001-7372.2016.04.011

    WANG Xiaowei, LI Chuang, YE Aijun, et al. Seismic demand analysis of a simply supported girder bridge in liquefied or non-liquefied ground [J]. China Journal of Highway and Transport, 2016, 29(4): 85 − 95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.04.011
    [35]
    WANG X, YE A, JI B. Fragility-based sensitivity analysis on the seismic performance of pile-group-supported bridges in liquefiable ground undergoing scour potentials [J]. Engineering Structures, 2019, 198(1): 1 − 15.
    [36]
    王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132 − 140. doi: 10.6052/j.issn.1000-4750.2015.01.0022

    WANG Xiaowei, YE Aijun, LUO Fuyuan. Seismic response sensitivity analysis of pile supported bridge structure in liquefiable ground [J]. Engineering Mechanics, 2016, 33(8): 132 − 140. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0022
    [37]
    WILSON D W, BOULANGER R W, KUTTER B L. Soil-pile-superstructure interaction at soft or liquefiable soil sites-Centrifuge data report for CSP3 [R]. Davis: University of California at Davis, 1997.
    [38]
    API RP 2A-WSD, Recommended practice for planning, designing, and constructing fixed offshore platform-working stress design [S]. Washington, D.C.: American Petroleum Institute, 2014.
    [39]
    BRANDENBERG S J. Behavior of pile foundations in liquefied and laterally spreading ground [D]. Davis, CA: University of California, Davis, 2005.
    [40]
    王震. 自复位预制拼装UHPC空心墩抗震性能及设计方法研究[D]. 南京: 东南大学, 2018.

    WANG Zhen. Research on seismic performance and design method of self-centering precast segmental UHPC hollow bridge piers [D]. Nanjing: Southeast University, 2018. (in Chinese)
  • Related Articles

    [1]ANALYSIS OF UPLIFT BEARING CAPACITY OF PILE FOUNDATIONS IN SOLAR COLLECTOR FIELDS WITHIN EXPANSIVE SOIL REGIONS CONSIDERING PILE-SOIL INTERACTION[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.11.0867
    [2]CHEN Yu, WU Jia-liang, WU Kun, HUANG Xin, LI Chang-hui. SEISMIC ANALYSIS OF BRIDGE PIER IN DEEP WATER CONSIDERING PILE-SOIL INTERACTION[J]. Engineering Mechanics, 2024, 41(8): 176-184. DOI: 10.6052/j.issn.1000-4750.2022.06.0584
    [3]YANG Xiao, FANG Xiao-wen, WANG De-jiang. DYNAMIC INTERACTION OF PILE-SOIL-SUPERSTRUCTURE IN LIQUEFIED SOIL UNDER SH WAVE[J]. Engineering Mechanics, 2017, 34(1): 101-108. DOI: 10.6052/j.issn.1000-4750.2015.04.0310
    [4]LI Yong-bo, ZHANG Hong-ru, GAO Xin-jun. SEISMIC RESPONSE ANALYSIS OF MSSS BRIDGE IN PERMAFROST INCLUDING PILE-SOIL INTERACTION[J]. Engineering Mechanics, 2012, 29(11): 183-190. DOI: 10.6052/j.issn.1000-4750.2011.03.0185
    [5]XU Jing, LI Hong-nan, LI Gang, HUANG Lian-zhuang. SEISMIC RESPONSE ANALYSIS OF TRANSMISSION TOWER IN CONSIDERATION OF THE PILE-SOIL DYNAMIC INTERACTION[J]. Engineering Mechanics, 2009, 26(9): 24-029.
    [6]ZHOU Zhan-xue;;LI Yan-tao;ZHANG Hai;BI Quan-chao. THE MR CONTROL ON STRUCTURE-PILE-SOIL INTERACTION[J]. Engineering Mechanics, 2009, 26(增刊Ⅰ): 134-138.
    [7]DONG Tian-wen, LIANG Li, WANG Wei. EXPERIMENTAL ANALYSIS ON THE LAMINA-SOILS INTERACTION IN PULLOUT SCREW PILE FOUNDATION[J]. Engineering Mechanics, 2008, 25(8): 150-155,.
    [8]ZHANG Ga, ZHANG Jian-min. ELASTOPLASTIC DAMAGE MODEL OF SOIL-STRUCTURE INTERFACE IN SINGLE PILE-SOIL INTERACTION ANALYSIS[J]. Engineering Mechanics, 2006, 23(2): 72-77.
    [9]SHANG Shou-ping, LU Hua-xi, WANG Hai-dong, YU Jun, LIU Fang-cheng. TEST INVESTIGATION AND THEORETICAL ANALYSIS OF LARGE-SCALE MODEL ON DYNAMIC SOIL-PILE–STRUCTURE INTERACTION[J]. Engineering Mechanics, 2006, 23(增刊Ⅱ): 155-166.
    [10]XIONG Hui, ZOU Yin-sheng. DYNAMIC INTERACTIVE ANALYSIS OF PILE GROUP-SOIL-STRUCTURE[J]. Engineering Mechanics, 2004, 21(4): 75-80.
  • Cited by

    Periodical cited type(1)

    1. 王晓伟,钱晋,叶爱君,王靖程,杨光怡. 砂土场地桩柱式墩桥梁桩身地震需求简化计算方法. 工程力学. 2024(12): 150-157 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (374) PDF downloads (78) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return