Citation: | WANG Xiao-wei, QIAN Jin, YE Ai-jun, WANG Jing-cheng, YANG Guang-yi. SIMPLIFIED SEISMIC DEMAND PREDICTION METHOD FOR EXTENDED PILE-SHAFTS IN COHESIONLESS SOILS[J]. Engineering Mechanics, 2024, 41(12): 150-157. DOI: 10.6052/j.issn.1000-4750.2022.10.0850 |
The pile-shaft is a substructure widely used in bridge engineering. Under earthquake, the pile may yield if the capacity protection design principle is not well followed. Due to the complex soil-pile interaction in modeling and analysis, it is still difficult to predict the seismic demand of piles based on the yielding moments of piers. Therefore a coupled soil-pile-structure model are adopted to investigate the ductility seismic design method of pile-shafts with a focus on the simplified seismic demand prediction method. Investigations are conducted on the bending moment distribution under different earthquake intensities to determine pile-shaft demand parameters, and extensive parametric analyses are performed to understand the mathematical relationship between pile-shaft demand parameters and soil/structural sensitive parameters. A simplified seismic demand prediction method is proposed.
[1] |
CHAI Y H. Flexural strength and ductility of extended pile-shafts. I: Analytical model [J]. Journal of Structural Engineering, 2002, 128(5): 586 − 594. doi: 10.1061/(ASCE)0733-9445(2002)128:5(586)
|
[2] |
CHAI Y H, HUTCHINSON T C. Flexural strength and ductility of extended pile-shafts. II: Experimental study [J]. Journal of Structural Engineering, 2002, 128(5): 595 − 602. doi: 10.1061/(ASCE)0733-9445(2002)128:5(595)
|
[3] |
HAN Q, DU X L, LIU J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake [J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263 − 273. doi: 10.1007/s11803-009-8162-0
|
[4] |
KAWASHIMA K, TAKAHASHI Y, GE H B, et al. Reconnaissance report on damage of bridges in 2008 Wenchuan, China, Earthquake [J]. Journal of Earthquake Engineering, 2009, 13(7): 965 − 996. doi: 10.1080/13632460902859169
|
[5] |
WEI X, WANG Q Q, WANG J J. Damage patterns and failure mechanisms of bridge pile foundation under earthquake [C]// 14th World Conference on Earthquake Engineering. Beijing: IAEE, 2008.
|
[6] |
Caltrans seismic design criteria version 2.0 [S]. Sacramento: California Department of Transportation, 2019.
|
[7] |
Specifications for highway bridges [S]. Tokyo: Japan Road Association, 2019.
|
[8] |
Guide specifications for LRFD seismic bridge design [S]. Washington: American Association of State Highway and Transportation Officials, 2017.
|
[9] |
JTG/T B02-01−2008, 公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008.
JTG/T B02-01−2008, Guidelines for seismic design of highway bridges [S]. Beijing: China Communications Press, 2008. (in Chinese)
|
[10] |
CJJ 166−2011, 城市桥梁抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2012.
CJJ 166−2011, Code for seismic design of urban bridges [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
|
[11] |
BUDEK A M, PRIESTLEY M J N, BENZONI G. The effect of external confinement on flexural hinging in drilled pile shafts [J]. Earthquake Spectra, 2004, 20(1): 1 − 24. doi: 10.1193/1.1647579
|
[12] |
GEROLYMOS N, DROSOS V, GAZETAS G. Seismic response of single-column bent on pile: Evidence of beneficial role of pile and soil inelasticity [J]. Bulletin of Earthquake Engineering, 2009, 7(2): 547 − 573. doi: 10.1007/s10518-009-9111-z
|
[13] |
ZHANG J, HUTCHINSON T C. Inelastic pile behavior with and without liquefaction effects [J]. Soil Dynamics and Earthquake Engineering, 2012, 36: 12 − 19. doi: 10.1016/j.soildyn.2011.11.007
|
[14] |
刘腾飞, 叶爱君, 王晓伟. 土体约束对桩柱式桥墩塑性铰长度的影响[J]. 同济大学学报(自然科学版), 2016, 44(10): 1490 − 1496. doi: 10.11908/j.issn.0253-374x.2016.10.003
LIU Tengfei, YE Aijun, WANG Xiaowei. Confinement effect of soil on plastic hinge length in extended pile-shafts [J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1490 − 1496. (in Chinese) doi: 10.11908/j.issn.0253-374x.2016.10.003
|
[15] |
董召先, 孙治国, 李宏男, 等. 液化场地钢筋混凝土桥墩残余位移分析[J]. 工程力学, 2023, 40(10): 154 − 168. doi: 10.6052/j.issn.1000-4750.2022.01.0083
DONG Zhaoxian, SUN Zhiguo, LI Hongnan, et al. Analysis on residual displacement of reinforced concrete bridge piers standing in liquefiable field [J]. Engineering Mechanics, 2023, 40(10): 154 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.01.0083
|
[16] |
谢文, 何天涛, 孙利民. 带剪切连梁双柱式桥墩地震响应特性振动台试验研究[J]. 工程力学, 2021, 38(5): 171 − 181. doi: 10.6052/j.issn.1000-4750.2020.06.0411
XIE Wen, HE Tiantao, SUN Limin. Shaking table tests on the seismic response characteristics of double-column piers with shear beams [J]. Engineering Mechanics, 2021, 38(5): 171 − 181. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0411
|
[17] |
王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132 − 140. doi: 10.6052/j.issn.1000-4750.2015.01.0022
WANG Xiaowei, YE Aijun, LUO Fuyuan. Sesimic response sensitivity analysis of pile supported bridge structures in liquefiable ground [J]. Engineering Mechanics, 2016, 33(8): 132 − 140. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0022
|
[18] |
王晓伟, BLANCO G, 叶爱君, 等. 砂土中桥梁高桩承台基础的抗震延性能力参数分析[J]. 土木工程学报, 2018, 51(5): 112 − 121.
WANG Xiaowei, BLANCO G, YE Aijun, et al. Parametric study on seismic ductility capacity of bridge elevated pile-cap foundation in sand [J]. China Civil Engineering Journal, 2018, 51(5): 112 − 121. (in Chinese)
|
[19] |
MCKENNA F. OpenSees: A framework for earthquake engineering simulation [J]. Computing in Science & Engineering, 2011, 13(4): 58 − 66.
|
[20] |
MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804 − 1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
|
[21] |
WANG X W, SHAFIEEZADEH A, YE A J. Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground [J]. Bulletin of Earthquake Engineering, 2018, 16(1): 229 − 257. doi: 10.1007/s10518-017-0199-2
|
[22] |
ZHANG Y Y, CONTE J P, YANG Z H, et al. Two-dimensional nonlinear earthquake response analysis of a bridge-foundation-ground system [J]. Earthquake Spectra, 2008, 24(2): 343 − 386. doi: 10.1193/1.2923925
|
[23] |
赫中营, 叶爱君. 力法非线性梁柱单元的合理单元长度划分[J]. 工程力学, 2014, 31(7): 178 − 184, 189. doi: 10.6052/j.issn.1000-4750.2013.02.0117
HE Zhongying, YE Aijun. Reasonable discrete element length of force-based nonlinear beam-column elements [J]. Engineering Mechanics, 2014, 31(7): 178 − 184, 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.02.0117
|
[24] |
WANG X W, YE A J, JI B H. Fragility-based sensitivity analysis on the seismic performance of pile-group-supported bridges in liquefiable ground undergoing scour potentials [J]. Engineering Structures, 2019, 198: 109427. doi: 10.1016/j.engstruct.2019.109427
|
[25] |
API RP 2GEO, Geotechnical and foundation design considerations [S]. Washington: American Petroleum Institute, 2011.
|
[26] |
O'Neill M W, Murchison J M. An evaluation of py relationships in sands [M]. Texas, US: University of Houston, 1983.
|
[27] |
MOSHER R L. Load transfer criteria for numerical analysis of axial loaded piles in sand [R]. Vicksburg: Automatic Data Processing Center, 1984.
|
[28] |
KULHAWY F H. Drilled shaft foundation [M]// FANG H Y. Foundation Engineering Handbook. 2nd ed. Boston: Springer, 1991: 537 − 552.
|
[29] |
MEYERHOF G G. Bearing capacity and settlement of pile foundations [J]. Journal of the Geotechnical Engineering Division, 1976, 102(3): 197 − 228. doi: 10.1061/AJGEB6.0000243
|
[30] |
WILSON D W. Soil-pile-superstructure interaction in liquefying sand and soft clay [D]. Davis: University of California, 1998.
|
[31] |
BAKER J W, LIN T, SHAHI S K, et al. New ground motion selection procedures and selected motions for the PEER transportation research program [R]. Berkeley: Pacific Earthquake Engineering Research Center, 2011.
|
[32] |
AHMED B F, DASGUPTA K. Seismic limit states for reinforced concrete bridge pile in sand [J]. Structures, 2021, 33: 128 − 140. doi: 10.1016/j.istruc.2021.04.027
|
1. |
朱承坚. 软土地基桥梁桩基础设计地震力简化计算方法. 工程建设与设计. 2025(03): 104-106 .
![]() |