CHEN Zheng-yang, HE Xiao-yang, SHAO Yong-bo, XIANG Yi-qiang, GUO Zhao-yuan. DYNAMIC RESPONSE AND SAFETY DESIGN ANALYSIS OF SUBMERGED FLOATING TUNNEL WITH ANCHOR-CABLES DUE TO CABLE LOSS[J]. Engineering Mechanics, 2023, 40(8): 161-169. DOI: 10.6052/j.issn.1000-4750.2021.12.0990
Citation: CHEN Zheng-yang, HE Xiao-yang, SHAO Yong-bo, XIANG Yi-qiang, GUO Zhao-yuan. DYNAMIC RESPONSE AND SAFETY DESIGN ANALYSIS OF SUBMERGED FLOATING TUNNEL WITH ANCHOR-CABLES DUE TO CABLE LOSS[J]. Engineering Mechanics, 2023, 40(8): 161-169. DOI: 10.6052/j.issn.1000-4750.2021.12.0990

DYNAMIC RESPONSE AND SAFETY DESIGN ANALYSIS OF SUBMERGED FLOATING TUNNEL WITH ANCHOR-CABLES DUE TO CABLE LOSS

More Information
  • Received Date: December 19, 2021
  • Revised Date: June 09, 2022
  • Accepted Date: June 23, 2022
  • Available Online: June 23, 2022
  • Aiming at the structural characteristics of the submerged floating tunnel (SFT) with anchor-cables, a technical framework is proposed for dynamic response analysis and structural safety design due to the sudden anchor-cable loss. The initial state of the SFT under the tube residual buoyancy and anchor-cable pre-tensions prior to the cable loss is established within ABAQUS finite element software. Then the dynamic response analysis of the single anchor-cable abruptly broken in the mid-span cross-section of the SFT is carried out by finite element program. Obtained are the maximum value of the response during the vibration phrase as well as the internal force redistribution of the remaining structure after the anchor-cable fails. Dynamic amplification factor (DAF) and dynamic coefficient (DC) are respectively used to evaluate the impact effects on the remaining structure due to the cable loss. Furthermore, a simplified structural response analysis method is proposed upon DAF and DC, and the results are compared with the dynamic calculations. The results show that applying the pre-tensions to some of the anchor-cables makes the initial state of the SFT more reasonable under the dead load. The structural vibration caused by local anchor-cable loss is significant, resulting in larger deformation of the SFT tube near the cable loss cross-section. It is rational to take the DAF=2.0 for the structural safety analysis of the displacement and bending moment of the SFT tube from the cable loss response. By taking the DC=1.8 to predict the maximum tensions of the remaining anchor-cables during the cable loss process, the safety reserve is higher.
  • [1]
    项贻强, 陈政阳, 杨赢. 悬浮隧道动力响应分析方法及模拟的研究进展[J]. 中国公路学报, 2017, 30(1): 69 − 76. doi: 10.3969/j.issn.1001-7372.2017.01.009

    XIANG Yiqiang, CHEN Zhengyang, YANG Ying. Research development of method and simulation for analyzing dynamic response of submerged floating tunnel [J]. China Journal of Highway and Transport, 2017, 30(1): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.01.009
    [2]
    ZHANG H, YANG Z, LI J, YUAN C, et al. A global review for the hydrodynamic response investigation method of submerged floating tunnels [J]. Ocean Engineering, 2021, 225: 108825. doi: 10.1016/j.oceaneng.2021.108825
    [3]
    周泰翔, 贾军波, 邓扬, 等. 悬浮隧道结构体系与动力响应研究进展[J]. 工程力学, 2022, 39(4): 15 − 28, 85. doi: 10.6052/j.issn.1000-4750.2021.01.0044

    ZHOU Taixiang, JIA Junbo, DENG Yang, et al. Recent developments in the structural system and dynamic response of submerged floating tunnel [J]. Engineering Mechanics, 2022, 39(4): 15 − 28, 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0044
    [4]
    DI PILATO M, PEROTTI F, FOGAZZI P. 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation [J]. Engineering Structures, 2008, 30: 268 − 281. doi: 10.1016/j.engstruct.2007.04.001
    [5]
    MAZZOLANI F, LANDOLFO R, FAGGIANO B, et al. Structural analyses of the submerged floating tunnel prototype in qiandao lake (PR of China) [J]. Advances in Structural Engineering, 2008, 11(4): 439 − 454. doi: 10.1260/136943308785836862
    [6]
    XIE J, CHEN J. Dynamic response analysis of submerged floating tunnel-canyon water system under earthquakes [J]. Applied Mathematical Modelling, 2021, 94: 757 − 779.
    [7]
    罗刚, 张玉龙, 潘少康, 等. 波浪地震耦合作用下悬浮隧道动力响应分析[J]. 工程力学, 2021, 38(2): 211 − 231. doi: 10.6052/j.issn.1000-4750.2020.05.0268

    LUO Gang, ZHANG Yulong, PAN Shaokang, et al. Dynamic response analysis of submerged floating tunnels to coupled wave-seismic action [J]. Engineering Mechanics, 2021, 38(2): 211 − 231. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0268
    [8]
    HE R, YUAN Y, FAN Z, et al. Semi-analytical solutions for seismic responses of tunnel tube in pier-supported submerged floating tunnel under vertical excitation [J]. Ships and Offshore Structures, 2022, 17(9): 2082 − 2102. doi: 10.1080/17445302.2021.1979722
    [9]
    陈健云, 王变革, 孙胜男. 悬浮隧道锚索的涡激动力响应分析[J]. 工程力学, 2007, 24(10): 186 − 192. doi: 10.3969/j.issn.1000-4750.2007.10.033

    CHEN Jianyun, WANG Biange, SUN Shengnan. Analysis of vortex-induced dynamic response for the anchor cable of submerged floating tunnel [J]. Engineering Mechanics, 2007, 24(10): 186 − 192. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.10.033
    [10]
    陈健云, 孙胜男, 苏志彬. 水流作用下悬浮隧道锚索的动力响应[J]. 工程力学, 2008, 25(10): 229 − 234.

    CHEN Jianyun, SUN Shengnan, SU Zhibin. Dynamic response of submerged floating-tunnel tethers subjected to current [J]. Engineering Mechanics, 2008, 25(10): 229 − 234. (in Chinese)
    [11]
    孙胜男, 苏志彬. 随机激励作用下悬浮隧道锚索的振动响应[J]. 工程力学, 2013, 30(3): 476 − 480. doi: 10.6052/j.issn.1000-4750.2011.04.0234

    SUN Shengnan, SU Zhibin. Vibration response of submerged floating tunnel tether subjected to random excitation [J]. Engineering Mechanics, 2013, 30(3): 476 − 480. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.04.0234
    [12]
    惠磊, 葛斐, 洪友士. 水中悬浮隧道在冲击载荷作用下的计算模型与数值模拟[J]. 工程力学, 2008, 25(2): 209 − 213.

    HUI Lei, GE Fei, HONG Youshi. Calculation model and numerical simulation of submerged floating tunnel subjected to impact loading [J]. Engineering Mechanics, 2008, 25(2): 209 − 213. (in Chinese)
    [13]
    杨赢, 项贻强, 陈政阳, 等. 悬浮隧道整体冲击响应模拟方法及试验验证[J]. 中国公路学报, 2019, 32(1): 127 − 134. doi: 10.3969/j.issn.1001-7372.2019.01.014

    YANG Ying, XIANG Yiqiang, CHEN Zhengyang, et al. Simulation method for global impact dynamic response of submerged floating tunnel and experimental verification [J]. China Journal of Highway and Transport, 2019, 32(1): 127 − 134. (in Chinese) doi: 10.3969/j.issn.1001-7372.2019.01.014
    [14]
    XIANG Y, YANG Y. Spatial dynamic response of submerged floating tunnel under impact load [J]. Marine Structures, 2017, 53: 20 − 31. doi: 10.1016/j.marstruc.2016.12.009
    [15]
    罗刚, 潘少康, 周晓军, 等. 水下非接触爆炸冲击作用下悬浮隧道动力响应[J]. 中国公路学报, 2018, 31(6): 69 − 76. doi: 10.3969/j.issn.1001-7372.2018.06.011

    LUO Gang, PAN Shaokang, ZHOU Xiaojun, et al. Dynamic response of a submerged floating tunnel during non-contact underwater explosions [J]. China Journal of Highway and Transport, 2018, 31(6): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.011
    [16]
    LUO G, ZHANG Y, REN Y, et al. Dynamic response analysis of submerged floating tunnel under impact-vehicle load action [J]. Applied Mathematical Modelling, 2021, 99: 346 − 358. doi: 10.1016/j.apm.2021.06.024
    [17]
    ZOU P, BRICKER J, JEREMY D. Bricker, et al. Uijttewaal Impacts of extreme events on hydrodynamic characteristics of a submerged floating tunnel [J]. Ocean Engineering, 2020, 218: 108221. doi: 10.1016/j.oceaneng.2020.108221
    [18]
    MIN S, JEONG K, NOH Y, et al. Damage detection for tethers of submerged floating tunnels based on convolutional neural networks [J]. Ocean Engineering, 2022, 250: 111048. doi: 10.1016/j.oceaneng.2022.111048
    [19]
    WU Z, WANG D, KE W, et al. Experimental investigation for the dynamic behavior of submerged floating tunnel subjected to the combined action of earthquake, wave and current [J]. Ocean Engineering, 2021, 239: 109911. doi: 10.1016/j.oceaneng.2021.109911
    [20]
    ZHOU Y, CHEN S. Framework of nonlinear dynamic simulation of long-span cable-stayed bridge and traffic system subjected to cable-loss incidents [J]. Journal of Structural Engineering, 2016, 142(3): 04015160. doi: 10.1061/(ASCE)ST.1943-541X.0001440
    [21]
    陆金钰, 董霄, 李娜, 等. 环箍-穹顶索杆结构局部断索抗倒塌能力分析[J]. 工程力学, 2016, 33(增刊 1): 173 − 178. doi: 10.6052/j.issn.1000-4750.2015.05.S021

    LU Jinyu, DONG Xiao, LI Na, et al. Progressive collapse-resistant capacity analysis of torus-dome cable-strut structure due to cable rupture [J]. Engineering Mechanics, 2016, 33(Suppl 1): 173 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S021
    [22]
    YAN S, ZHAO X, LU Y. Collapse-resisting mechanisms of planar trusses following sudden member loss [J]. Journal of Structural Engineering, 2017, 143(9): 04017114. doi: 10.1061/(ASCE)ST.1943-541X.0001849
    [23]
    Post-Tensioning Institute (PTI). Recommendations for stay cable design, testing and installation: PTI DC45. 1-12 [S]. Phoenix: Cable-Stayed Bridges Committee, 2012.
    [24]
    WOLFF M, STAROSSEK U. Cable-loss analyses and collapse behavior of cable-stayed bridges [C]. Philadelphia: Proceedings of the Fifth International IABMAS Conference, 2010: 423 − 436.
    [25]
    CAI J, XU Y, ZHUANG L, et al. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges [J]. Journal of Zhejiang University Science (Applied Physics & Engineering), 2012, 13(5): 323 − 334.
    [26]
    张羽, 方志, 卢江波, 等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40(5): 237 − 246.

    ZHANG Yu, FANG Zhi, LU Jiangbo, et al. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction [J]. Journal of Vibration and Shock, 2021, 40(5): 237 − 246. (in Chinese)
    [27]
    HOANG V, KIYOMIYA O, AN T. Experimental and numerical study of lateral cable rupture in cable-stayed bridges: Case study [J]. Journal of Bridge Engineering, 2018, 23(6): 05018004. doi: 10.1061/(ASCE)BE.1943-5592.0001227
    [28]
    王霄翔, 陈志华, 刘红波. 弦支穹顶局部环索断索动力冲击效应试验[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(11): 1210 − 1210.

    WANG Xiaoxiang, CHEN Zhihua, LIU Hongbo. Dynamic impact effect experiment on a suspend dome subjected to local hoop cable rupture [J]. Journal of Tianjin University (Science and Technology), 2017, 50(11): 1210 − 1210. (in Chinese)
    [29]
    WANG X, CHEN Z, YU Y, et al. Numerical and experimental study on loaded suspend dome subjected to sudden cable failure [J]. Journal Constructional Steel Research, 2017, 137: 358 − 371. doi: 10.1016/j.jcsr.2017.06.014
    [30]
    ZHANG C, HAO H, BI K, et al. Dynamic amplification factors for a system with multiple degrees of freedom [J]. Earthquake Engineering and Engineering Vibration, 2020, 19(2): 363 − 375. doi: 10.1007/s11803-020-0567-9
    [31]
    张超, 付馨迪, 许莉, 等. 拉索失效对多重四边环索-张弦穹顶的影响[J]. 湖南大学学报(自然科学版), 2020, 47(1): 83 − 92. doi: 10.16339/j.cnki.hdxbzkb.2020.01.010

    ZHANG Chao, FU Xindi, XU Li, et al. Influence of multiple square loops-string dome subjected to cable failure [J]. Journal of Hunan University (Natural Sciences), 2020, 47(1): 83 − 92. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2020.01.010
    [32]
    张超, 付馨迪, 杜修力, 等. 多重四边形环索-张弦穹顶局部断索冲击分析[J]. 工程力学, 2021, 38(1): 64 − 77. doi: 10.6052/j.issn.1000-4750.2019.12.0781

    ZHANG Chao, FU Xindi, DU Xiuli, et al. Dynamic analysis of multi-loop cable-string dome due to sudden cable failure [J]. Engineering Mechanics, 2021, 38(1): 64 − 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0781
    [33]
    XIANG Y, CHEN Z, BAI B, et al. Mechanical behaviors and experimental study of submerged floating tunnel subjected to local anchor-cable failure [J]. Engineering Structures, 2020, 212: 110521. doi: 10.1016/j.engstruct.2020.110521
    [34]
    WU Z, YANG S, TANG L, et al. Experimental investigation and analysis for hydrodynamic behaviours and progressive collapse phenomenon of submerged floating tunnel under anchor cables' breakage [J]. Ships and Offshore Structures, 2022, 17(9): 1924 − 1938. doi: 10.1080/17445302.2021.1954303
    [35]
    YANG Y, XIANG Y, LIN H, et al. Study on vibration response of submerged floating tunnel considering vehicle eccentric load [J]. Applied Ocean Research, 2021, 110: 102598. doi: 10.1016/j.apor.2021.102598
    [36]
    QIU W, JIANG M, ZHANG Z. Responses of self-anchored suspension bridge to sudden breakage of hangers [J]. Structural Engineering and Mechanics, 2014, 50: 241 − 255. doi: 10.12989/sem.2014.50.2.241
    [37]
    WU G, QIU W, WU T. Nonlinear dynamic analysis of the self-anchored suspension bridge subjected to sudden breakage of a hanger [J]. Engineering Failure Analysis, 2019, 97: 707 − 717.
    [38]
    XU Y, HAN Q, PARKE G, et al. Experimental study and numerical simulation of the progressive collapse resistance of single-layer latticed domes [J]. Journal of Structural Engineering, 2017, 143(9): 04017121. doi: 10.1061/(ASCE)ST.1943-541X.0001868
    [39]
    SEO S, MUN H, LEE J, et al. Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification [J]. Marine Structures, 2015, 44: 142 − 158. doi: 10.1016/j.marstruc.2015.09.002
    [40]
    YANG Y, XIANG Y, GAO C. Vehicle-SFT-current coupling vibration of multi-span submerged floating tunnel, Part II: comparative analysis of finite difference method and parametric study [J]. Ocean Engineering, 2022, 249: 110951. doi: 10.1016/j.oceaneng.2022.110951
  • Related Articles

    [1]DONG Chen-xiao, CHEN Wan-ru, XIANG Yi-qiang, SHEN Yong-gang. MODEL OPTIMIZATION AND DYNAMIC ANALYSIS OF CABLE-TUNNEL COUPLED VIBRATION OF SUBMERGED FLOATING TUNNEL UNDER EARTHQUAKE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.04.0279
    [2]YUE Qing-rui, LU Xin-zheng, XU Zhen, SHI Zhong-qi, TIAN Yuan, GU Dong-lian, WANG Gang. THE "RISK SOURCE-RISK EXPOSURE-MITIGATION FORCE" THEORETICAL FRAMEWORK FOR URBAN SAFETY[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.08.0602
    [3]LU Xiao, LU Xin-zheng, LI Meng-ke, GU Dong-lian, XIE Lin-lin. INFLUENCE OF SEISMIC ACTION ADJUSTMENTS ON SEISMIC DESIGN AND SAFETY OF RC FRAMES[J]. Engineering Mechanics, 2017, 34(4): 22-31. DOI: 10.6052/j.issn.1000-4750.2016.11.0871
    [4]DU Xian-ting, XIA He, LI Hui-le, CUI Kun-peng. DYNAMIC ANALYSIS FRAMEWORK OF TRAIN-BRIDGE SYSTEM BASED ON IMPROVED GAUSS PRECISE INTEGRATION METHOD[J]. Engineering Mechanics, 2013, 30(9): 171-176. DOI: 10.6052/j.issn.1000-4750.2012.05.0356
    [5]LI Ying, CHEN Yue. THE IMPORTANCE AND TECHNICAL DIFFICULTIES OF TUNNEL AND ISLANDS FOR HONG KONG ZHUHAI MACAO BRIDGE PROJECT[J]. Engineering Mechanics, 2011, 28(增刊Ⅱ): 67-77.
    [6]GE Yao-jun. TECHNICAL CHALLENGES AND REFINEMENT RESEARCH ON WIND RESISTANCE OF LONG-SPAN BRIDGES[J]. Engineering Mechanics, 2011, 28(增刊Ⅱ): 11-23.
    [7]CHEN Jian-yun, WANG Bian-ge. ANALYSIS OF VORTEX-INDUCED DYNAMIC RESPONSE FOR THE ANCHOR CABLE OF SUBMERGED FLOATING TUNNEL[J]. Engineering Mechanics, 2007, 24(10): 186-192.
    [8]Liang bo, Chen Xingchong. The significance, the key technical problems and the mechanical problems of Qinghai-Tibetan Railway[J]. Engineering Mechanics, 2004, 21(S1): 139-149.
    [9]Liu Xiaoqiang, Wu Huibi. NONLINEAR ANALYSIS MODEL OF TALL FRAMEWORKS[J]. Engineering Mechanics, 1993, 10(4): 42-51.
    [10]Liu Xiaoqiang, Wu Huibi. APPROXIMATE DESIGN METHOD FOR SECOND ORDER EFFECT IN HIGHRISE FRAMEWORKS[J]. Engineering Mechanics, 1993, 10(2): 72-78.
  • Cited by

    Periodical cited type(1)

    1. 房玉林,李静,陈健云,刘迁苹. 锚索突断下悬浮隧道的动力特性数值研究. 大连海事大学学报. 2024(03): 132-142 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (388) PDF downloads (87) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return