OU Jia-ling, SHAO Yong-bo. STATIC STRENGTH OF CONCRETE FILLED CIRCULAR CFRP-STEEL TUBULAR STUBS UNDER AXIAL COMPRESSION[J]. Engineering Mechanics, 2019, 36(10): 180-188. DOI: 10.6052/j.issn.1000-4750.2018.10.0577
Citation: OU Jia-ling, SHAO Yong-bo. STATIC STRENGTH OF CONCRETE FILLED CIRCULAR CFRP-STEEL TUBULAR STUBS UNDER AXIAL COMPRESSION[J]. Engineering Mechanics, 2019, 36(10): 180-188. DOI: 10.6052/j.issn.1000-4750.2018.10.0577

STATIC STRENGTH OF CONCRETE FILLED CIRCULAR CFRP-STEEL TUBULAR STUBS UNDER AXIAL COMPRESSION

More Information
  • Received Date: October 27, 2018
  • Revised Date: April 18, 2019
  • The static strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. Based on continuum mechanics, a theoretical model of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs under axial compression is established based on the assumptions that steel tube and concrete are both in a three-dimensional stress state and CFRP is in a uniaxial tensile stress state. The equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs under axial compression are deduced. The theoretical predictions from the presented equations are compared with existing experimental results, and the accuracy of the theoretical predictions is verified. Finally, a parametric study is carried out by the predictions of presented equations. The results from parametric study indicate that increasing the yield strength of a steel tube and the compressive strength of concrete or decreasing the diameter/thickness ratio of a steel tube can both improve the yield strength and the ultimate strength of C-CFRP-CFST stubs. The ultimate strength of C-CFRP-CFST stubs can be also improved by increasing the number of CFRP layers and the circumferential tensile strength of CFRP. However, the number of CFRP layers has little influence on the yield strength of C-CFRP-CFST stubs while the tensile strength of CFRP has no influence on such yield strength.
  • [1]
    Han L H, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures:Members[J]. Journal of Constructional Steel Research, 2014, 100:211-228.
    [2]
    Liang Q Q. Performance-based analysis of concretefilled steel tubular beam-columns, Part I:Theory and algorithms[J]. Journal of Constructional Steel Research, 2009, 65(2):363-372.
    [3]
    Han L H, Yao G H, Zhao X L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)[J]. Journal of Constructional Steel Research, 2005, 61(9):241-1269.
    [4]
    王庆利, 侯婷婷, 李庆刚, 王月. 钢管高性能混凝土轴压短柱的静力性能(Ⅰ):试验研究及有限元模拟[J]. 工业建筑, 2013, 43(3):1-7. Wang Qingli, Hou Tingting, Li Qinggang, Wang Yue. Static performance of the high-performance concrete filled steel tubular stub column (Ⅰ):experimental study and finite element simulation[J]. Industrial Construction, 2013, 43(3):1-7. (in Chinese)
    [5]
    贺锋, 周绪红, 唐昌辉. 钢管高强混凝土轴压短柱承载力性能的试验研究[J]. 工程力学, 2000, 17(4):61-66. He Feng, Zhou Xuhong, Tang Changhui. Experimental research on the baring behavior of high-strength-filed steel tube under axial compression[J]. Engineering Mechanics, 2000, 17(4):61-66. (in Chinese)
    [6]
    徐礼华, 吴敏, 周鹏华, 等. 钢管自应力自密实高强混凝土短柱轴心受压承载力试验研究[J]. 工程力学, 2017, 34(3):98-105. Xu Lihua, Wu Min, Zhou Penghua, et al. Experimental investigation on high-strength self-stressing and self-compacting concrete filled steel tube columns subjected to uniaxial compression[J]. Engineering Mechanics, 2017, 34(3):98-105. (in Chinese)
    [7]
    蔡绍怀, 焦占拴. 钢管混凝土短柱的基本性能和强度计算[J]. 建筑结构学报, 1984, 5(6):13-29. Cai Shaohuai, Jiao Zhansuan. Basic performance and strength calculation of concrete filled steel tubular short columns[J]. Journal of Building Structures, 1984, 5(6):13-29. (in Chinese)
    [8]
    王庆利, 李瑞霖, 李庆刚, 等. 钢管高性能混凝土轴压短柱的静力性能(Ⅱ):机理分析及承载力[J]. 工业建筑, 2013, 43(3):8-12. Wang Qingli, Li Ruilin, Li Qinggang, et al. Static performance of the high-performance concrete filled steel tubular stub column (Ⅱ):Mechanism analysis and load bearing capacity[J]. Industrial Construction, 2013, 43(3):8-12. (in Chinese)
    [9]
    卢方伟, 李四平, 孙国钧. 方钢管混凝土轴压短柱的非线性有限元分析[J]. 工程力学, 2007, 24(3):110-114. Lu Fangwei, Li Siping, Sun Guojun. Nonlinear finite element analysis of square concrete-filled steel tube columns under compressive load[J]. Engineering Mechanics, 2007, 24(3):110-114. (in Chinese)
    [10]
    曲慧, 陶忠, 韩林海. CFST柱-RC梁钢筋环绕式节点抗震性能试验[J]. 工业建筑, 2006, 36(11):27-31, 22. Qu Hui, Tao Zhong, Han Linhai. Experimental investigation on cyclic performance of CFST column-RC beam joints enclosed by rebars[J]. Industrial Construction, 2006, 36(11):27-31, 22. (in Chinese)
    [11]
    Zhang J, Huang Y, Chen Y, et al. Numerical and experimental study on seismic behavior of concrete-filled T-section steel tubular columns and steel beam planar frames[J]. Journal of Central South University, 2018, 25(7):1774-1785.
    [12]
    Wang K, Young B. Fire resistance of concrete-filled high strength steel tubular columns[J]. Thin-walled Structures, 2013, 71(13):46-56.
    [13]
    Han L H, Chen F, Liao F Y, et al. Fire performance of concrete filled stainless steel tubular columns[J]. Engineering Structures, 1998, 56(6):165-181.
    [14]
    Parvin A, Wang W. Behavior of FRP jacketed concrete columns under eccentric loading[J]. Journal of Composites for Construction, 2001, 5(3):146-152.
    [15]
    Che Y, Wang Q L, Shao Y B. Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST)[J]. Advanced Steel Construction, 2012, 8(4):331-358.
    [16]
    Hu Y M, Yu T, Teng J G. FRP-confined circular concrete-filled thin steel tubes under axial compression[J]. Journal of Composites for Construction, 2011, 15(5):850-860.
    [17]
    Lu Y, Li N, Li S. Behavior of FRP-confined concrete-filled steel tube columns[J]. Polymers, 2014, 6(5):1333-1349.
    [18]
    王庆利, 薛阳, 邵永波, 等. CFRP约束方钢管混凝土轴压短柱的静力性能研究[J]. 土木工程学报, 2011, 44(3):24-31. Wang Qingli, Xue Yang, Shao Yongbo, et al. Study of static performance of axially compressed concrete filled square steel tubular stub columns confined by CFRP[J]. China Civil Engineering Journal, 2011, 44(3):24-31. (in Chinese)
    [19]
    王庆利, 方言, 任庆新. 圆CFRP-钢管混凝土轴压构件静力性能研究[J]. 土木工程学报, 2008, 41(10):21-29. Wang Qingli, Fang Yan, Ren Qingxin. Study on static performance of concentrically compressed concrete filled circular CFRP-steel tubular members[J]. China Civil Engineering Journal, 2008, 41(10):21-29. (in Chinese)
    [20]
    Guo Y, Zhang Y. Comparative study of CFRP-confined CFST stub columns under axial compression[J]. Advances in Civil Engineering, 2018, 2018:1-8.
    [21]
    Tao Z, Han L H, Zhuang J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns[J]. Advances in Structural Engineering, 2007, 10(1):37-46.
    [22]
    Wang Q L, Zhao Z, Shao Y B, et al. Static behavior of axially compressed square concrete filled CFRP-steel tubular (S-CF-CFRP-ST) columns with moderate slenderness[J]. Thin-Walled Structures, 2017, 110:106-122.
    [23]
    Wang Q L, Shao Y B. Compressive performances of concrete filled square CFRP-steel tubes[J]. Steel and Composite Structures, 2014, 16(5):455-480.
    [24]
    王庆利, 王金鱼, 张永丹. CFRP-钢管砼轴压短柱受力性能分析[J]. 工程力学, 2006, 23(8):102-105. Wang Qingli, Wang Jinyu, Zhang Yongdan. Mechanical property analysis on axially compressed concrete filled circular CFRP-steel tube stub columns[J]. Engineering Mechanics, 2006, 23(8):102-105. (in Chinese)
    [25]
    顾威, 赵颖华, 尚东伟. CFRP-钢管混凝土轴压短柱承载力分析[J]. 工程力学, 2006, 23(1):149-153. Gu Wei, Zhao Yinghua, Shang Dongwei. Load carrying capacity of concrete filled cfrp-steel tubes under axial compression[J]. Engineering Mechanics, 2006, 23(1):149-153. (in Chinese)
    [26]
    Lu L, Lu Y Y. Axial bearing capacity of short FRP confined concrete-filled steel tubular columns[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2010, 25(3):454-458.
    [27]
    Ding F X, Yu Z W, Bai Y, et al. Elasto-plastic analysis of circular concrete-filled steel tube stub columns[J]. Journal of Constructional Steel Research, 2011, 67(10):1567-1577.
    [28]
    Dong C X, Kwan A K H, Ho J C M. Effects of external confinement on structural performance of concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2017, 132:72-82.
    [29]
    Ding F X, Lu D R, Bai Y, et al. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading[J]. Thin-Walled Structures, 2018, 125:107-118.
  • Cited by

    Periodical cited type(13)

    1. 刘如来,梁炯丰,王刘浩翔. 条带CFRP圆钢管锂渣混凝土短柱轴压性能研究. 广西科技大学学报. 2023(01): 28-35 .
    2. 陈宗平,徐炜圣,周济. CFRP铝合金复合管海洋混凝土柱轴压性能试验及承载力计算. 土木工程学报. 2023(06): 25-37 .
    3. 陈宗平,庞云升,许瑞天,周济. CFRP-钢复合约束海洋混凝土柱轴压性能试验研究及承载力计算. 建筑结构学报. 2023(07): 116-128 .
    4. 李谦,吕文舒. CFRP加固的承插式桥墩抗震性能分析. 中外公路. 2023(05): 109-113 .
    5. 李松,焦楚杰,何松松,梁健,李宏宇. CFRP约束钢管高强混凝土轴压短柱承载力的极限分析. 工程科学与技术. 2022(02): 162-169 .
    6. 张耀文,宋灿. 圆钢管混凝土长柱轴心受压影响因素分析. 许昌学院学报. 2021(02): 88-93 .
    7. 康玉梅,张乃源,任超,陈猛. 单轴压缩作用下CFST柱的声发射特征. 东北大学学报(自然科学版). 2021(05): 720-725+740 .
    8. 王刚. 钢管再生混凝土柱力学性能的影响因素. 结构工程师. 2021(02): 148-156 .
    9. 纪孙航,王文达,鲜威. CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究. 工程力学. 2021(08): 178-191 . 本站查看
    10. 王东锋,邵永波,欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究. 工程力学. 2021(10): 188-199 . 本站查看
    11. 谢剑,杨丽,徐福泉. 预应力钢箍加固混凝土圆形短柱轴压性能研究. 工程力学. 2020(11): 195-208 . 本站查看
    12. 贾立夫,罗穗兵,杜金辉. 钢管再生混凝土柱偏心受压性能研究. 混凝土. 2020(11): 43-47+61 .
    13. 王昌胜,史之恒,曹兵. 改进组合式十字形钢管混凝土柱力学性能研究. 重庆理工大学学报(自然科学). 2020(11): 124-129 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (498) PDF downloads (77) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return