WANG Dong-feng, SHAO Yong-bo, OU Jia-ling. EXPERIMENTAL STUDY ON AXIAL COMPRESSIVE CAPACITY OF CORRODED CONCRETE FILLED CIRCULAR CFRP-STEEL TUBE STUBS[J]. Engineering Mechanics, 2021, 38(10): 188-199. DOI: 10.6052/j.issn.1000-4750.2020.10.0732
Citation: WANG Dong-feng, SHAO Yong-bo, OU Jia-ling. EXPERIMENTAL STUDY ON AXIAL COMPRESSIVE CAPACITY OF CORRODED CONCRETE FILLED CIRCULAR CFRP-STEEL TUBE STUBS[J]. Engineering Mechanics, 2021, 38(10): 188-199. DOI: 10.6052/j.issn.1000-4750.2020.10.0732

EXPERIMENTAL STUDY ON AXIAL COMPRESSIVE CAPACITY OF CORRODED CONCRETE FILLED CIRCULAR CFRP-STEEL TUBE STUBS

More Information
  • Received Date: October 13, 2020
  • Revised Date: March 01, 2021
  • Available Online: March 23, 2021
  • The axial compressive capacities of non-corroded concrete filled circular steel tube (T4.5-CFST) stubs, corroded concrete filled circular steel tube (C-CCFST) stubs, and CFRP-corroded concrete filled circular steel tube (CFRP-C-CCFST) stubs were studied experimentally. The corrosion defects were simulated by material removal. A total of 19 specimens were tested, including one T4.5-CFST stub, eight C-CCFST stubs, and ten CFRP-C-CCFST stubs. Within the ranges of the test parameters, the test results show that the ultimate strengths of the C-CCFST specimens were lower than those of the T4.5-CFST specimen by 3.0% to 22.9%. The ultimate strengths of the CFRP-C-CCFST specimens were increased by 26.8% to 49.8% as compared with those of the C-CCFST specimens. Compared with the C-CCFST specimens, the CFRP-C-CCFST specimens had greater axial compressive stiffness and ultimate strengths due to the confinement effect of the CFRP. The ultimate strengths of the CFRP-C-CCFST specimens were higher than that of the T4.5-CFST specimen, indicating that the specimens strengthened by CFRP have better mechanical performance. The local buckling of the steel tubes with corrosion defects was effectively restrained by the CFRP. In addition, the ultimate strengths of the CFRP-corroded concrete filled circular steel tube stubs were studied theoretically. The accuracy was verified by the experimental results.
  • [1]
    韩林海. 钢管混凝土结构-理论与实践[M]. 北京: 科学出版社, 2016.

    Han Linhai. Concrete filled steel tube structures: theory and experience [M]. Beijing: Science Press, 2016. (in Chinese)
    [2]
    Li W, Zhao X L, Han L H. Behavior of CFDST stub columns under preload, sustained load and chloride corrosion [J]. Journal of Constructional Steel Research, 2015, 107: 12 − 23. doi: 10.1016/j.jcsr.2014.12.023
    [3]
    Hou C, Han L H, Zhao X L. Full-range analysis on square CFST stub columns and beams under loading and chloride corrosion [J]. Thin-Walled Structures, 2013, 68: 50 − 64. doi: 10.1016/j.tws.2013.03.003
    [4]
    王庆利, 李清林, 屈绍娥. 长期荷载下圆钢管混凝土梁的耐腐蚀性能试验研究[J]. 建筑结构学报, 2015, 36(增刊 2): 57 − 62.

    Wang Qingli, Li Qinglin, Qu Shaoe. Experimental study on corrosion resistance property of circular concrete filled steel tubular beam under long-term loading [J]. Journal of Building Structures, 2015, 36(Suppl 2): 57 − 62. (in Chinese)
    [5]
    Han L H, Hou C C, Wang Q L. Behavior of circular CFST stub columns under sustained load and chloride corrosion [J]. Journal of Constructional Steel Research, 2014, 103: 23 − 36. doi: 10.1016/j.jcsr.2014.07.021
    [6]
    Hua Y X, Han L H, Wang Q L, et al. Behaviour of square CFST beam-columns under combined sustained load and corrosion: Experiments [J]. Thin-Walled Structures, 2019, 136: 353 − 366. doi: 10.1016/j.tws.2018.12.037
    [7]
    Hou C C, Han L H, Wang Q L, et al. Flexural behavior of circular concrete filled steel tubes (CFST) under sustained load and chloride corrosion [J]. Thin-Walled Structures, 2016, 107: 182 − 196. doi: 10.1016/j.tws.2016.02.020
    [8]
    陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34 − 43. doi: 10.6052/j.issn.1000-4750.2019.05.ST01

    Chen Mengcheng, Fang Wei, Huang Hong. Static behavior of corroded concrete-filled steel tubular members by simulating acid rain solution [J]. Engineering Mechanics, 2020, 37(2): 34 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST01
    [9]
    陈梦成, 林博洋, 黄宏. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展, 2018, 20(1): 73 − 81.

    Chen Mengcheng, Lin Boyang, Huang Hong. Research on the bearing capacity of corroded circular concrete filled steel tubular short columns [J]. Progress in steel building structures, 2018, 20(1): 73 − 81. (in Chinese)
    [10]
    陈梦成, 林博洋, 黄宏. 锈蚀方钢管混凝土短柱轴压承载力研究[J]. 钢结构, 2017, 32(5): 110 − 116.

    Chen Mengcheng, Lin Boyang, Huang Hong. Research on the bearing capacity of corroded square concrete filled steel tubular short column [J]. Steel Construction, 2017, 32(5): 110 − 116. (in Chinese)
    [11]
    王庆利, 李瑞霖, 李庆刚, 等. 钢管高性能混凝土轴压短柱的静力性能(II): 机理分析及承载力[J]. 工业建筑, 2013, 43(3): 8 − 12.

    Wang Qingli, Li Ruilin, Li Qinggang, et al. Static performance of the high-performance concrete filled steel tubular stub column (Ⅱ): mechanism analysis and load bearing capacity [J]. Industrial Construction, 2013, 43(3): 8 − 12. (in Chinese)
    [12]
    Han L H, Yao G H, Zhao X L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC) [J]. Journal of Constructional Steel Research, 2005, 61(9): 241 − 269.
    [13]
    王庆利, 侯婷婷, 李庆刚, 等. 钢管高性能混凝土轴压短柱的静力性能(Ⅰ): 试验研究及有限元模拟[J]. 工业建筑, 2013, 43(3): 1 − 7.

    Wang Qingli, Hou Tingting, Li Qinggang, et al. Static performance of the high-performance concrete filled steel tubular stub column (Ⅰ): experimental study and finite element simulation [J]. Industrial Construction, 2013, 43(3): 1 − 7. (in Chinese)
    [14]
    Han L H, Hou C, Wang Q L. Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: Experiments [J]. Journal of Constructional Steel Research, 2012, 71: 11 − 25. doi: 10.1016/j.jcsr.2011.11.012
    [15]
    花幼星, 侯超, 韩林海. 氯离子腐蚀环境下钢管混凝土轴拉构件受力性能研究[J]. 工程力学, 2015(增刊 1): 149 − 142, 158. doi: 10.6052/j.issn.1000-4750.2014.05.S012

    Hua Youxing, Hou Chao, Han Linhai. Behavior of CFST tensile members subjected to chloride corrosion [J]. Engineering Mechanics, 2015(Suppl 1): 149 − 142, 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S012
    [16]
    王庆利, 冯立明, 屈绍娥. 圆钢管混凝土轴压短柱在长期荷载-氯盐腐蚀耦合作用下的试验研究[J]. 土木工程学报, 2015(增刊 1): 48 − 52.

    Wang Qingli, Feng Liming, Qu Shaoe. Experimental study on axially compressed circular concrete-filled steel tubular stub columns under long-term coupling effects of loading and chloride corrosion [J]. China Civil Engineering Journal, 2015(Suppl 1): 48 − 52. (in Chinese)
    [17]
    陈梦成, 陈娜茹. 局部腐蚀对圆钢管混凝土柱轴向承载力的影响分析[J]. 华东交通大学学报, 2019, 36(3): 80 − 90.

    Chen Mengcheng, Chen Naru. Influence of localized corrosion on axial bearing capacity of circular steel tube concrete column [J]. Journal of East China Jiaotong University, 2019, 36(3): 80 − 90. (in Chinese)
    [18]
    王庆利, 薛阳, 邵永波, 等. CFRP约束方钢管混凝土轴压短柱的静力性能研究[J]. 土木工程学报, 2011, 44(3): 24 − 31.

    Wang Qingli, Xue Yang, Shao Yongbo, et al. Study of static performance of axially compressed concrete filled square steel tubular stub columns confined by CFRP [J]. China Civil Engineering Journal, 2011, 44(3): 24 − 31. (in Chinese)
    [19]
    王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8): 96 − 105. doi: 10.6052/j.issn.1000-4750.2018.07.0377

    Wang Yuhang, Wang Yuyan, Hu Shaowei. Study on the mechanical properties of CFRP circumferentially confined concrete filled steel tube column of marine structure under compression-bending-torsion combined load [J]. Engineering Mechanics, 2019, 36(8): 96 − 105. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0377
    [20]
    Shakir A S, Guan Z W, Jones S W. Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening [J]. Engineering Structures, 2016, 116: 148 − 162. doi: 10.1016/j.engstruct.2016.02.047
    [21]
    Wang Q L, Li J, Shao Y B, et al. Flexural performances of square concrete filled CFRP-steel tubes (S-CF-CFRP-ST) [J]. Advances in Structural Engineering, 2015, 18(8): 1319 − 1344. doi: 10.1260/1369-4332.18.8.1319
    [22]
    Wang Y H, Wang Y Y, Hou C, et al. Torsional capacity of concrete-filled steel tube columns circumferentially confined by CFRP [J]. Journal of Constructional Steel Research, 2020, 175: 106320. doi: 10.1016/j.jcsr.2020.106320
    [23]
    Che Y, Wang Q L, Shao Y B. Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST) [J]. Advanced Steel Construction, 2012, 8(4): 331 − 358.
    [24]
    Wang Q L, Shao Y B. Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST) [J]. Steel and Composite Structures, 2014, 16(5): 455 − 480. doi: 10.12989/scs.2014.16.5.455
    [25]
    欧佳灵, 邵永波. 轴压作用下CFRP加固圆钢管混凝土短柱的承载力分析[J]. 工程力学, 2019, 36(10): 180 − 188. doi: 10.6052/j.issn.1000-4750.2018.10.0577

    Ou Jialing, Shao Yongbo. Static strength of concrete filled circular CFRP-steel tubular stubs under axial compression [J]. Engineering Mechanics, 2019, 36(10): 180 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0577
    [26]
    顾威, 赵颖华, 尚东伟. CFRP-钢管混凝土轴压短柱承载力分析[J]. 工程力学, 2006, 23(1): 149 − 153. doi: 10.3969/j.issn.1000-4750.2006.01.027

    Gu Wei, Zhao Yinghua, Shang Dongwei. Load carrying capacity of concrete filled CFRP-steel tubes under axial compression [J]. Engineering Mechanics, 2006, 23(1): 149 − 153. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.01.027
    [27]
    Wang Q L, Zhao Z, Shao Y B, et al. Static behavior of axially compressed square concrete filled CFRP-steel tubular (S-CF-CFRP-ST) columns with moderate slenderness [J]. Thin-Walled Structures, 2017, 110: 106 − 122. doi: 10.1016/j.tws.2016.10.019
    [28]
    王庆利, 叶茂, 周琳. 圆CFRP-钢管混凝土构件受弯性能研究[J]. 土木工程学报, 2008, 10(8): 38 − 46.

    Wang Qingli, Ye Mao, Zhou Lin. Study on the flexural behaviour of concrete filled circular CFRP-steel tubular members [J]. China Civil Engineering Journal, 2008, 10(8): 38 − 46. (in Chinese)
    [29]
    王庆利, 方言, 任庆新. 圆CFRP-钢管混凝土轴压构件静力性能研究[J]. 土木工程学报, 2008, 41(10): 21 − 29. doi: 10.3321/j.issn:1000-131X.2008.10.004

    Wang Qingli, Fang Yan, Ren Qingxin. Study on static performance of concentrically compressed concrete filled circular CFRP-steel tubular members [J]. China Civil Engineering Journal, 2008, 41(10): 21 − 29. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.10.004
    [30]
    Karagah H, Shi C, Dawood M, et al. Experimental investigation of short steel columns with localized corrosion [J]. Thin-Walled Structures, 2015, 87: 191 − 199. doi: 10.1016/j.tws.2014.11.009
    [31]
    Elchalakani M. Rehabilitation of corroded steel CHS under combined bending and bearing using CFRP [J]. Journal of Constructional Steel Research, 2016, 125: 26 − 42. doi: 10.1016/j.jcsr.2016.06.008
    [32]
    GB/T 228.1−2010, 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.

    GB/T 228.1−2010, Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: Standard Press of China, 2010. (in Chinese)
    [33]
    GB/T 3354−2014, 定向纤维增强聚合物基复合材料拉伸性能试验方法[S]. 北京: 中国标准出版社, 2014.

    GB/T 3354−2014, Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials [S]. Beijing: Standard Press of China, 2014. (in Chinese)
    [34]
    GB/T 50081−2002, 普通混凝土力学性能试验方法标准[S]. 北京: 中国标准出版社, 2003.

    GB/T 50081−2002, Standard for test method of mechanical properties on ordinary concrete [S]. Beijing: China Architecture and Building Press, 2003. (in Chinese)

Catalog

    Article Metrics

    Article views (495) PDF downloads (74) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return