XU Li-wei, LIU Xu, CHEN Fu-quan. MECHANICAL ANALYSIS OF BURIED SUSPENDED PIPELINE UNDER THE ACTION OF COLLAPSE[J]. Engineering Mechanics, 2018, 35(12): 212-219,228. DOI: 10.6052/j.issn.1000-4750.2017.11.0837
Citation: XU Li-wei, LIU Xu, CHEN Fu-quan. MECHANICAL ANALYSIS OF BURIED SUSPENDED PIPELINE UNDER THE ACTION OF COLLAPSE[J]. Engineering Mechanics, 2018, 35(12): 212-219,228. DOI: 10.6052/j.issn.1000-4750.2017.11.0837

MECHANICAL ANALYSIS OF BURIED SUSPENDED PIPELINE UNDER THE ACTION OF COLLAPSE

More Information
  • Received Date: November 08, 2017
  • Revised Date: May 09, 2018
  • Ground subsidence induced by collapse leads to suspension or subsidence of pipes. It can cause stress concentration, which is a significant factor being a threat to safe operation of pipelines. Then the pipes can be divided into suspended segment and buried segment. Based on the theories of the Vlasov Elastic Foundation Beam and simply-supported beams, a mechanical model of interaction between the pipelines and the soils was built up. According to the compatibility conditions of the hanging and non-hanging parts, this paper solved differential equations describing the deflection of pipeline and derived the formulas of deflections and internal forces. Connecting with pipeline operation status, the formulas of piping stresses were deduced by piping stress analysis. Meanwhile piping stress analysis can define the scope of application of the model. The calculated results were compared to the measured values and results by the Winkler model. It is shown that the calculated results of the Vlasov model are more suitable than the Winkler model in analyzing stresses and deformation of pipelines. According to the normalized analysis of main affecting factors including pipe material, pipe dimension, pipe depth and length of collapse, the length of collapse is the most important factor for the safe operation of pipelines.
  • [1]
    Klar A, Elkayam I, Marshall A M. Design oriented linear-equivalent approach for evaluating the effect of tunneling on pipelines[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2015, 142(1):04015062.
    [2]
    Yuan F, Wang L, Guo Z, et al. Analytical analysis of pipeline-soil interaction during J-lay on a plastic seabed with bearing resistance proportional to depth[J]. Applied Ocean Research, 2012, 36(3):60-68.
    [3]
    Kouretzis G P, Krabbenhoft K, Sheng C, et al. Soilburied pipeline interaction for vertical downwards relative offset[J]. Canadian Geotechnical Journal, 2014, 51(10):1087-1094.
    [4]
    Kouretzis G P, Karamitros D K, Sloan S W. Analysis of buried pipelines subjected to ground surface settlement and heave[J]. Canadian Geotechnical Journal, 2015, 52(8):1058-1071.
    [5]
    Kinash O, Najafi M. Large-diameter pipe subjected to landslide loads[J]. Journal of Pipeline Systems Engineering & Practice, 2012, 3(1):1-7.
    [6]
    Cao Z, Han J, Xu C. Road surface permanent deformations with a shallowly buried steel-reinforced high-density polyethylene pipe under cyclic loading[J]. Geotextiles & Geomembranes, 2016, 44(1):28-38.
    [7]
    Luo X, Lu S, Shi J, et al. Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement[J]. Engineering Failure Analysis, 2015, 48(1):144-152.
    [8]
    Peng S, Luo Y. Determination of stress field in buried thin pipelines resulting from ground subsidence due to longwall mining[J]. Mining Science and Technology, 1988, 6(2):205-216.
    [9]
    Luo Y, Peng S S, Chen H J, et al. Protection of pipelines affected by surface subsidence[J]. TRANSACTIONS, 1998, 302:98-103.
    [10]
    徐龙军, 刘庆阳, 谢礼立. 海底跨断层输气管道动力特性数值模拟与分析[J]. 工程力学, 2015, 32(12):99-107. Xu Longjun, Liu Qingyang, Xie Lili. Numerical simulation and analysis for submarine pipeline systems crossing active strike-slip fault[J]. Eengineering Mechanics, 2015, 32(12):99-107. (in Chinese)
    [11]
    王峰会, 赵新伟, 王沪毅. 高压管道黄土塌陷情况下的力学分析与计算[J]. 油气储运, 2004, 23(4):6-8. Wang Fenghui, Zhao Xinwei, Wang Huyi. Failure of high pressure pipeline under collapse of loess[J]. Oil & Gas Storage and Transportation, 2004, 23(4):6-8. (in Chinese)
    [12]
    王小龙, 姚安林. 埋地钢管局部悬空的挠度和内力分析[J]. 工程力学, 2008, 25(8):218-222. Wang Xiaolong, Yao Anlin. Deflection and internal force analysis of buried steel pipelines in partial hanging[J]. Eengineering Mechanics, 2008, 25(8):218-222. (in Chinese)
    [13]
    Wang Y, Moore I D. Simplified Design Equations for Joints in Buried Flexible Pipes Based on Hetényi Solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(3):04013020.
    [14]
    Kim H S, Kim W S, Bang I W, et al. Analysis of stresses on buried natural gas pipeline subjected to ground subsidence[C]//The 1998 International Pipeline Conference, IPC. Part 2(of 2), Haifa, Israel. American Society of Mechanical Engineers, U.S., 1998:749-756.
    [15]
    Yu J, Zhang C, Huang M. Soil-pipe interaction due to tunnelling:Assessment of Winkler modulus for underground pipelines[J]. Computers and Geotechnics, 2013, 50(1):17-28.
    [16]
    Limura S. Simplified mechanical model for evaluating stress in pipeline subject to settlement[J]. Construction and Building Materials, 2004, 18(6):469-479.
    [17]
    Selvadurai A P S, Gladwell G M L. Elastic Analysis of Soil-Foundation Interaction[M]. Amsterdam, Elsevier Scientific Pub. Co, 1979:71-71.
    [18]
    Vlasov V Z. Beams, Plates and Shells on Elastic foundations[R]. Jerusalem Israel Program for Scientific Translations, Jerusalem, 1966.
    [19]
    GB 50251-2015, 输气管道工程设计规范[S]. 北京:中国计划出版社, 2015. GB 50251-2015, Code for design of gas transmission pipeline engineering[S]. Beijing:China Planning Press, 2015. (in Chinese)
    [20]
    Guidelines for the design of buried steel pipe[S]. Washington D.C. American Lifelines Alliance, 2001.
    [21]
    张鹏, 魏韡, 崔立伟, 等. 地表冲沟条件下悬空管道的力学模型与延寿分析[J]. 天然气工业, 2014, 34(4):142-148. Zhang Peng, Wei Wei, Cui Liwei, et al. A mechanical model and life extension analysis of the suspended pipelines under the condition of geological gulch[J]. Natural Gas Industry, 2014, 34(4):142-148. (in Chinese)
  • Cited by

    Periodical cited type(14)

    1. 俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
    2. 钟紫蓝,赵鑫,张亚波,李锦强,许成顺,杜修力. 强震作用下跨断层管道柔性接口抗震加固研究. 世界地震工程. 2024(01): 25-33 .
    3. 马文滨,段志文,李想,张行. 基于振动响应分析的海底管道悬空内检测研究. 工程设计学报. 2024(03): 348-356 .
    4. 李斌,方宏远,杜雪明,孙明明,薛冰寒. 脱空混凝土管道纵向力学行为及自膨胀高聚物注浆修复性能提升. 工程力学. 2024(11): 134-144 . 本站查看
    5. 赵建胜,吴涛,崔伟,靳军伟. 双隧道开挖对既有车站结构影响的简化计算方法. 地下空间与工程学报. 2024(S2): 819-826 .
    6. 胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 . 本站查看
    7. 钟紫蓝,张亚波,李锦强,韩俊艳,缪惠全. 球墨铸铁管道接口弯曲性能试验. 哈尔滨工业大学学报. 2023(09): 143-150 .
    8. 董辉,任旭云,谢锐,杜朝彬. 基于有限元方法的城市道路塌陷下埋地管道力学分析. 四川职业技术学院学报. 2023(06): 165-168 .
    9. 李乔楚,杨瀚匀. 土体塌陷作用下埋地管道力学分析研究现状. 焊管. 2022(07): 12-18+31 .
    10. 刘绪都,冯新,李明昊,李昕. 基于分布式应变监测的埋地管道悬空识别方法研究. 防灾减灾工程学报. 2022(05): 1076-1084 .
    11. 刘芳媛,侯磊,吕家兴,刘少柱. 组对焊接管道自由端最大允许位移的模拟计算. 油气储运. 2021(07): 747-752 .
    12. 吴彬,刘晓宇. 埋地悬空管道弹塑性受力分析与计算. 三峡大学学报(自然科学版). 2020(05): 42-48 .
    13. 熊启华,曾嘉,王芮琼,汪维芳,李静,杨琛,陶良. 武汉长江Ⅰ级阶地覆盖型岩溶塌陷成因及力学模型研究. 资源环境与工程. 2020(03): 408-412 .
    14. 黄庆典,李琪. 应用于管道内检测的智能巡检机器人设计. 科技创新与应用. 2019(22): 101-102 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (357) PDF downloads (69) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return