LI Bin, FANG Hong-yuan, DU Xue-ming, SUN Ming-ming, XUE Bing-han. LONGITUDINAL MECHANICAL BEHAVIOR OF VOID CONCRETE PIPES AND RESILIENCE IMPROVEMENT OF SELF-EXPANDING POLYMER GROUTING REHABILITATION[J]. Engineering Mechanics, 2024, 41(11): 134-144. DOI: 10.6052/j.issn.1000-4750.2022.09.0814
Citation: LI Bin, FANG Hong-yuan, DU Xue-ming, SUN Ming-ming, XUE Bing-han. LONGITUDINAL MECHANICAL BEHAVIOR OF VOID CONCRETE PIPES AND RESILIENCE IMPROVEMENT OF SELF-EXPANDING POLYMER GROUTING REHABILITATION[J]. Engineering Mechanics, 2024, 41(11): 134-144. DOI: 10.6052/j.issn.1000-4750.2022.09.0814

LONGITUDINAL MECHANICAL BEHAVIOR OF VOID CONCRETE PIPES AND RESILIENCE IMPROVEMENT OF SELF-EXPANDING POLYMER GROUTING REHABILITATION

More Information
  • Received Date: September 18, 2022
  • Revised Date: November 30, 2022
  • Available Online: March 03, 2023
  • To reveal the longitudinal mechanical behavior of void concrete pipes and the resilience improvement of self-expanding polymer external grouting, three full-scale tests and 3D finite element numerical simulations of dense, void, and polymer-repaired concrete pipes were performed, and the numerical models were verified by the test results. Selecting the longitudinal bending moment of the pipe section and the vertical displacement of the crown under different bedding conditions as analysis objects, the impacts of void length and void width on the mechanical behavior of concrete pipes were discussed, and the ξM and ξU referring to the longitudinal bending moment and vertical displacement repair indices were introduced to quantitatively characterize the resilience improvement effect of the repaired pipes. The results show that the positive and negative longitudinal bending moments of the void pipes are distributed in the adjacent pipe sections and joints on both sides of the void, and the peaks are located at SgL2, SgR2 and SgL3, SgR3, respectively. The longitudinal moments of void pipes decrease with the increasing void width at SgL1 and SgR1, increase with the increasing void width at remaining measuring points, and increase with the increasing void length in the whole longitudinal length. The longitudinal moments of pipes with different void widths and void lengths are higher than those of the dense pipes except for SgL1 and SgR1. Compared with the dense pipes, the maximum increases in vertical displacement and joint shear displacement of the void pipes are 155% and 230%, respectively; the longitudinal bending moments of the repaired pipes are slightly lower and the vertical displacements are slightly higher than those of the dense pipes, and the maximum repair indices of longitudinal bending moments and vertical displacements are 76.5% and 83.7%.

  • [1]
    安关峰. 城镇排水管道非开挖修复工程技术指南[M]. 北京: 中国建筑工业出版社, 2016.

    AN Guanfeng. Technical guide for trenchless rehabilitation engineering of urban sewer pipeline [M]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [2]
    TAN Z, MOORE I D. Effect of backfill erosion on moments in buried rigid pipes [C]// Proceedings of Transportation Research Board 86th Annual Meeting. Washington: TRB, 2007.
    [3]
    PETER J M, CHAPMAN D, MOORE I D, et al. Impact of soil erosion voids on reinforced concrete pipe responses to surface loads [J]. Tunnelling and Underground Space Technology, 2018, 82: 111 − 124. doi: 10.1016/j.tust.2018.08.003
    [4]
    KAMEL S, MEGUID M A. Investigating the effects of local contact loss on the earth pressure distribution on rigid pipes [J]. Geotechnical and Geological Engineering, 2013, 31(1): 199 − 212. doi: 10.1007/s10706-012-9580-8
    [5]
    BALKAYA M, MOORE I D, SAĞLAMER A. Study of non-uniform bedding due to voids under jointed PVC water distribution pipes [J]. Geotextiles and Geomembranes, 2012, 34: 39 − 50. doi: 10.1016/j.geotexmem.2012.01.003
    [6]
    KAMEL S, MEGUID M. An experimental study of soil erosion around leaking pipes [C]// 2008 No-Dig Conference & Exhibition. Dallas, Texas: North American Society for Trenchless Technology, 2008: 1 − 11.
    [7]
    MEGUID M A, KAMEL S. A three-dimensional analysis of the effects of erosion voids on rigid pipes [J]. Tunnelling and Underground Space Technology, 2014, 43: 276 − 289. doi: 10.1016/j.tust.2014.05.019
    [8]
    张稳军, 朱战魁, 李瑶, 等. 冲蚀空洞对埋地供水管道力学性能的影响研究[J]. 隧道与地下工程灾害防治, 2020, 2(3): 36 − 47.

    ZHANG Wenjun, ZHU Zhankui, LI Yao, et al. Study on the mechanical behaviors of buried water supply pipelines under the effect of erosion void [J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 36 − 47. (in Chinese)
    [9]
    王小龙, 姚安林. 埋地钢管局部悬空的挠度和内力分析[J]. 工程力学, 2008, 25(8): 218 − 222.

    WANG Xiaolong, YAO Anlin. Deflection and internal force analysis of buried steel pipelines in partial hanging [J]. Engineering Mechanics, 2008, 25(8): 218 − 222. (in Chinese)
    [10]
    许利惟, 刘旭, 陈福全. 塌陷作用下埋地悬空管道的力学响应分析[J]. 工程力学, 2018, 35(12): 212 − 219, 228. doi: 10.6052/j.issn.1000-4750.2017.11.0837

    XU Liwei, LIU Xu, CHEN Fuquan. Mechanical analysis of buried suspended pipeline under the action of collapse [J]. Engineering Mechanics, 2018, 35(12): 212 − 219, 228. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0837
    [11]
    徐建国, 胡会明, 李松涛, 等. 地下管道脱空渗漏高聚物注浆抬升修复与数值分析[J]. 水利与建筑工程学报, 2015, 13(3): 35 − 40. doi: 10.3969/j.issn.1672-1144.2015.03.007

    XU Jianguo, HU Huiming, LI Songtao, et al. The numerical analysis of underground pipe settlement and vacancy repairing with polymer injection [J]. Journal of Water Resources and Architectural Engineering, 2015, 13(3): 35 − 40. (in Chinese) doi: 10.3969/j.issn.1672-1144.2015.03.007
    [12]
    FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing [J]. Tunnelling and Underground Space Technology, 2018, 74: 185 − 194. doi: 10.1016/j.tust.2018.01.018
    [13]
    徐建国, 陈志豪, 王壬. 埋地排水管道高聚物注浆修复受力特性分析[J]. 岩土工程学报, 2021, 43(1): 121 − 129.

    XU Jianguo, CHEN Zhihao, WANG Ren. Mechanical characteristics of buried drainage pipes repaired by polymer grouting technology [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 121 − 129. (in Chinese)
    [14]
    GB/T 11836−2009, 混凝土和钢筋混凝土排水管[S]. 北京: 中国标准出版社, 2009.

    GB/T 11836−2009, Concrete and reinforced concrete sewer pipes [S]. Beijing: Standards Press of China, 2009. (in Chinese)
    [15]
    LI M J, DU M R, WANG F M, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression [J]. Construction and Building Materials, 2020, 259: 119797. doi: 10.1016/j.conbuildmat.2020.119797
    [16]
    WEI Y, WANG F M, GAO X, et al. Microstructure and fatigue performance of polyurethane grout materials under compression [J]. Journal of Materials in Civil Engineering, 2017, 29(9): 04017101. doi: 10.1061/(ASCE)MT.1943-5533.0001954
    [17]
    李嘉, 王博, 张景伟, 等. 高聚物注浆材料动力特性试验研究[J]. 建筑材料学报, 2017, 20(2): 198 − 203. doi: 10.3969/j.issn.1007-9629.2017.02.007

    LI Jia, WANG Bo, ZHANG Jingwei, et al. Experimental research on dynamic property of polymer grouting materials [J]. Journal of Building Materials, 2017, 20(2): 198 − 203. (in Chinese) doi: 10.3969/j.issn.1007-9629.2017.02.007
    [18]
    高翔, 黄卫, 魏亚, 等. 聚氨酯高聚物注浆材料抗压强度测试与模拟[J]. 复合材料学报, 2017, 34(2): 438 − 445. doi: 10.13801/j.cnki.fhclxb.20160413.002

    GAO Xiang, HUANG Wei, WEI Ya, et al. Experiment and modeling for compressive strength of polyurethane grout materials [J]. Acta Materiae Compositae Sinica, 2017, 34(2): 438 − 445. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20160413.002
    [19]
    高翔, 魏亚, 王复明, 等. 聚氨酯注浆材料在循环压缩加载下疲劳性能与微观结构演化[J]. 复合材料学报, 2017, 34(3): 550 − 556. doi: 10.13801/j.cnki.fhclxb.20160426.001

    GAO Xiang, WEI Ya, WANG Fuming, et al. Fatigue resistant and microstructure evolution of polyurethane grout materials under uniaxial compression [J]. Acta Materiae Compositae Sinica, 2017, 34(3): 550 − 556. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20160426.001
    [20]
    LI B, WANG F M, FANG H Y, et al. Experimental and numerical study on polymer grouting pretreatment technology in void and corroded concrete pipes [J]. Tunnelling and Underground Space Technology, 2021, 113: 103842. doi: 10.1016/j.tust.2021.103842
    [21]
    ZHAI K J, ZHANG C B, FANG H Y, et al. Mechanical responses of bell‐and‐spigot joints in buried prestressed concrete cylinder pipe under coupled service and surcharge loads [J]. Structural Concrete, 2021, 22(2): 827 − 844. doi: 10.1002/suco.201900568
    [22]
    VAZOURAS P, KARAMANOS S A, DAKOULAS P. Mechanical behavior of buried steel pipes crossing active strike-slip faults [J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 164 − 180. doi: 10.1016/j.soildyn.2012.05.012
    [23]
    朱梦杰, 任亮, 李宏男, 等. 基于iBeam3单元逆有限元法的冻土区管道变形研究[J]. 工程力学, 2022, 39(10): 61 − 67. doi: 10.6052/j.issn.1000-4750.2021.05.0334

    ZHU Mengjie, REN Liang, LI Hongnan, et al. Research on pipeline deformation in permafrost region using inverse finite element method based on iBeam3 element [J]. Engineering Mechanics, 2022, 39(10): 61 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0334
    [24]
    徐涛龙, 邵常宁, 兰旭彬, 等. 粒子法和离散元法在管土耦合分析中的应用[J]. 工程力学, 2022, 39(增刊 1): 239 − 249. doi: 10.6052/j.issn.1000-4750.2021.06.S048

    XU Taolong, SHAO Changning, LAN Xubin, et al. Application of particle method and discrete element method in pipe-soil coupling analysis [J]. Engineering Mechanics, 2022, 39(Suppl 1): 239 − 249. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.S048
    [25]
    钟紫蓝, 王书锐, 杜修力, 等. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224 − 230, 239. doi: 10.6052/j.issn.1000-4750.2017.12.0914

    ZHONG Zilan, WANG Shurui, DU Xiuli, et al. Experimental and numerical study on axial mechanical properties of pipeline under pseudo-static loading [J]. Engineering Mechanics, 2019, 36(3): 224 − 230, 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0914
    [26]
    ROBERT D J, RAJEEV P, KODIKARA J, et al. Equation to predict maximum pipe stress incorporating internal and external loadings on buried pipes [J]. Canadian Geotechnical Journal, 2016, 53(8): 1315 − 1331. doi: 10.1139/cgj-2015-0500
    [27]
    LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892 − 900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [28]
    WANG R, WANG F M, XU J G, et al. Full-scale experimental study of the dynamic performance of buried drainage pipes under polymer grouting trenchless rehabilitation [J]. Ocean Engineering, 2019, 181: 121 − 133. doi: 10.1016/j.oceaneng.2019.04.009
    [29]
    GBT 50123−2019 , 土工试验方法标准[S] . 北京: 中国计划出版社, 2019.

    GBT 50123−2019, Standard for geotechnical testing method [S]. Beijing: China Planning Press, 2019 (in Chinese)
    [30]
    CSA A23.3 Technical Committee. Concrete design handbook (4th Edition) [S]. Canada: Cement Association of Canada, 2020.
    [31]
    LI B, FANG H Y, ZHAI K J, et al. Mechanical behavior of concrete pipes with erosion voids and the effectiveness evaluation of the polyurethane grouting [J]. Tunnelling and Underground Space Technology, 2022, 129: 104672. doi: 10.1016/j.tust.2022.104672

Catalog

    Article Metrics

    Article views (152) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return