Citation: | JIN Liu, DU Xiu-li. MESO-SCALE NUMERICAL ANALYSIS OF THE EFFECT OF LOADING RATE ON THETENSILE FAILURE BEHAVIOR OF CONCRETE[J]. Engineering Mechanics, 2015, 32(8): 42-49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791 |
[1] |
宁建国, 商霖, 孙远翔. 混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J]. 力学进展, 2006, 36(3): 389―405. Ning Jianguo, Shang Lin, Sun Yuanxiang. The developments of dynamic constitutive behavior of concrete [J]. Advances in Mechanics, 2006, 36(3): 389―405. (in Chinese)
|
[2] |
Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869―886.
|
[3] |
Park S W, Xia Z, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887―910.
|
[4] |
Perry S H, Prichard S J. Sleeved concrete cylinders subjected to hard impact [C]. 3rd Asia-Pacific Conference on Shock & Impact Loads on Structures, Singapore Lok TS, Lim CH. CI-Premier Conference Organisation, 1999: 359―371.
|
[5] |
Forquin P, Gary G, Gatuingt F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425―446.
|
[6] |
Ross C A, Thomson P Y, Tedesco J W. Split-Hopkinson pressure-bar test on concrete and mortar in tension and compression [J]. ACI Materials Journal, 1989, 86(5): 475―481.
|
[7] |
Tedesco J W, Ross C A. Experimental and numerical analysis of high strain rate splitting-tensile tests [J]. ACI Materials Journal, 1993, 90(2): 162―169.
|
[8] |
Kim D J, Siriharoonchai K, El-Tawil, Naaman A E. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression [J]. International Journal of Impact Engineering, 2010, 37(2): 141―149.
|
[9] |
Ross C A, Tedesco J W, Kuennen S T. Effects of strain rate on concrete strength [J]. ACI Materials Journal, 1995, 92(1): 37―45.
|
[10] |
Yan D M, Lin G. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research, 2006, 36(7): 1371―1378.
|
[11] |
Brara A, Klepaczko J R. Fracture energy of concrete at high loading rates in tension [J]. International Journal of Impact Engineering, 2007, 34(3): 424―435.
|
[12] |
Sluys L J. Wave propagation and localization in a rate-dependent crack medium-model formulation and one dimensional example [J]. International Journal of Solids and Structures, 1992, 29(23): 2945―2958.
|
[13] |
Ožbolt J, Sharma A. Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen [J]. Engineering Fracture Mechanics, 2012, 85(1): 88―102.
|
[14] |
Zhou X Q, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21/22): 2013―2026.
|
[15] |
Zhou X Q, Hao H. Modelling of compressive behavior of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures, 2008, 45(17): 4648―4661.
|
[16] |
Cusatis G. Strain-rate effects on concrete behavior [J]. International Journal of Impact Engineering, 2011, 38(4): 162―170.
|
[17] |
Pedersen R R, Simone A, Sluys L J. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete [J]. Cement and Concrete Research, 2013, 50(1): 74―87.
|
[18] |
Qin C, Zhang C H. Numerical study of dynamic behavior of concrete by meso-scale particle element modeling [J]. International Journal of Impact Engineering, 2011, 38(12): 1011―1021.
|
[19] |
Grassl P, Jirásek M. Damage-plastic model for concrete failure [J]. International Journal of Solids and Structures, 2006, 43(22/23): 7166―7196.
|
[20] |
Badel P, Godard V, Leblond J B. Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete [J]. International Journal of Solids and Structures, 2007, 44(18): 5848―5874.
|
[21] |
Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41(3): 339―358.
|
[22] |
Lubliner J, Oliver J, Oller S, Ońate E. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299―326.
|
[23] |
Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892―900.
|
[24] |
Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425―450.
|
[25] |
Tedesco J W, Hughes M L, Ross C A. Numerical simulation of high strain rate concrete compression testes [J]. Computers and Structures, 1994, 51(1): 65―77.
|
[26] |
Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. International Journal of Solids and Structures, 1996, 33(23): 3363―3375.
|
[27] |
Hentz S, Donźe F V, Daudeville L. Discrete element modeling of concrete submitted to dynamic loading at high strain rates [J]. Computers and Structures, 2004, 82(29/30): 2509―2524.
|
[28] |
Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735―739.
|
[29] |
Pyo S, El-Tawil S. Crack velocity-dependent dynamic tensile behavior of concrete [J]. International Journal of Impact Engineering, 2013, 55(1): 63―70.
|
[30] |
Riedel W, Wicklein M, Thoma K. Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35(3): 155―171.
|
[31] |
Ožbolt J, Sharma A, Reinhardt H W. Dynamic fracture of concrete-compact tension specimen [J]. International Journal of Solids and Structures, 2011, 48(10): 1534―1543.
|
[32] |
Tehrani F F, Absi J, Allou F, Petit C H. Heterogeneous numerical modeling of asphalt concrete through use of a biphsic approach: Porous matrix/inclusion [J]. Computational Materials Science, 2013, 69(1): 186―196.
|
[33] |
Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading [J]. Cement and Concrete Research, 2011, 41(11): 1130―1142.
|
[34] |
Du Xiuli, Jin Liu, Ma Guowei. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of RC members [J]. Internatonal Journal of Damage Mechanics, 2012, 22(5): 617―642.
|
1. |
史利伟,李敏. 材料的率相关性对钢筋混凝土桥梁抗震性能的影响. 山西建筑. 2024(20): 153-156 .
![]() | |
2. |
肖诗云,王杨. 基于率相关内聚力本构模型的混凝土细观单轴受拉性能. 东北大学学报(自然科学版). 2023(11): 1647-1654+1662 .
![]() | |
3. |
吴春力,李顺才,赵云龙,Slatin Vadim. 声速及加载速率对混凝土强度及声发射特征影响的试验研究. 甘肃科学学报. 2021(01): 63-69 .
![]() | |
4. |
金浏,杨旺贤,余文轩,杜修力. 基于细观模拟的轻骨料混凝土破坏行为及尺寸效应研究. 防灾减灾工程学报. 2021(01): 91-99 .
![]() | |
5. |
金浏,杨旺贤,余文轩,杜修力. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析. 工程力学. 2020(03): 56-65 .
![]() | |
6. |
白金超,成云海,郑强强,李峰辉,李波,吴斐. 干、湿喷混凝土受载力学特性及破坏机制. 煤炭学报. 2020(08): 2777-2786 .
![]() | |
7. |
郭瑞奇,任辉启,龙志林,吴祥云,姜锡权. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究. 爆炸与冲击. 2020(09): 18-31 .
![]() | |
8. |
金浏,余文轩,杜修力,张帅,李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟. 工程力学. 2019(08): 59-69+78 .
![]() | |
9. |
金浏,余文轩,杜修力,张帅,杨旺贤,李冬. 基于细观模拟的混凝土动态压缩强度尺寸效应研究. 工程力学. 2019(11): 50-61 .
![]() | |
10. |
满轲,刘晓丽,宫凤强,马洪素,王驹. 不同赋存深度新疆天湖花岗岩的动态拉伸力学特性研究. 工程力学. 2018(03): 200-209 .
![]() | |
11. |
崔云璇,应黎坪,陈曦昀,彭一江. 不同应变率下再生混凝土动态力学性能分析. 广西大学学报(自然科学版). 2018(04): 1547-1553 .
![]() | |
12. |
胡大琳,张立兴,陈定市. 混凝土三维细观随机模型的建立和有限元剖分. 交通运输工程学报. 2018(05): 1-11 .
![]() | |
13. |
雷光宇,韩霁昌,党发宁,李娟. 预静载对细观混凝土动态力学特性的数值试验研究. 水利与建筑工程学报. 2016(03): 55-58 .
![]() | |
14. |
杜修力,金浏. 细观分析方法在混凝土物理/力学性质研究方面的应用. 水利学报. 2016(03): 355-371 .
![]() | |
15. |
崔健,刘冰,杜成斌,孙立国. 混凝土类脆性材料动强度提高的机理试验. 中州煤炭. 2016(04): 46-50 .
![]() |