JIN Liu, DU Xiu-li. MESO-SCALE NUMERICAL ANALYSIS OF THE EFFECT OF LOADING RATE ON THETENSILE FAILURE BEHAVIOR OF CONCRETE[J]. Engineering Mechanics, 2015, 32(8): 42-49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791
Citation: JIN Liu, DU Xiu-li. MESO-SCALE NUMERICAL ANALYSIS OF THE EFFECT OF LOADING RATE ON THETENSILE FAILURE BEHAVIOR OF CONCRETE[J]. Engineering Mechanics, 2015, 32(8): 42-49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791

MESO-SCALE NUMERICAL ANALYSIS OF THE EFFECT OF LOADING RATE ON THETENSILE FAILURE BEHAVIOR OF CONCRETE

More Information
  • Received Date: August 27, 2013
  • The effects of loading rate and heterogeneity of meso-structure on the failure pattern and the macroscopic dynamic mechanical properties of concrete are investigated. Considering the effect of concrete heterogeneity, concrete is simulated as a two-phase composite composed of aggregate and mortar matrix at meso-scale in this work. The strain-rate effect is also accounted for and the damaged plasticity theory is employed to describe the mechanical behavior of mortar matrix. It is assumed that the aggregate phase cannot be damaged due to high strength, and thus the aggregate particles are set to be elastic. The dynamic tensile failure modes of a single-edge notched concrete specimen and an L-shaped specimen are numerically simulated. The simulation results indicate that the dynamic failure pattern and the direction of crack propagation of concrete have pronounced loading rate dependency. With the increase of loading rate, the failure mode of concrete changes from mode-I to mixed mode. A more complex meso-structure leads to a stronger interaction between the components and more complicated crack paths, and a more obvious crack branching behavior. Furthermore, as loading rate increases much more branching cracks occur within concrete and the width of the damaged region increases, implying that the fracture process at high strain rates requires more energy demand to reach failure. This should be the main reason for an increased dynamic strength of concrete.
  • [1]
    宁建国, 商霖, 孙远翔. 混凝土材料动态性能的经验公式、强度理论与唯象本构模型[J]. 力学进展, 2006, 36(3): 389―405. Ning Jianguo, Shang Lin, Sun Yuanxiang. The developments of dynamic constitutive behavior of concrete [J]. Advances in Mechanics, 2006, 36(3): 389―405. (in Chinese)
    [2]
    Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869―886.
    [3]
    Park S W, Xia Z, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887―910.
    [4]
    Perry S H, Prichard S J. Sleeved concrete cylinders subjected to hard impact [C]. 3rd Asia-Pacific Conference on Shock & Impact Loads on Structures, Singapore Lok TS, Lim CH. CI-Premier Conference Organisation, 1999: 359―371.
    [5]
    Forquin P, Gary G, Gatuingt F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425―446.
    [6]
    Ross C A, Thomson P Y, Tedesco J W. Split-Hopkinson pressure-bar test on concrete and mortar in tension and compression [J]. ACI Materials Journal, 1989, 86(5): 475―481.
    [7]
    Tedesco J W, Ross C A. Experimental and numerical analysis of high strain rate splitting-tensile tests [J]. ACI Materials Journal, 1993, 90(2): 162―169.
    [8]
    Kim D J, Siriharoonchai K, El-Tawil, Naaman A E. Numerical simulation of the Split Hopkinson Pressure Bar test technique for concrete under compression [J]. International Journal of Impact Engineering, 2010, 37(2): 141―149.
    [9]
    Ross C A, Tedesco J W, Kuennen S T. Effects of strain rate on concrete strength [J]. ACI Materials Journal, 1995, 92(1): 37―45.
    [10]
    Yan D M, Lin G. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research, 2006, 36(7): 1371―1378.
    [11]
    Brara A, Klepaczko J R. Fracture energy of concrete at high loading rates in tension [J]. International Journal of Impact Engineering, 2007, 34(3): 424―435.
    [12]
    Sluys L J. Wave propagation and localization in a rate-dependent crack medium-model formulation and one dimensional example [J]. International Journal of Solids and Structures, 1992, 29(23): 2945―2958.
    [13]
    Ožbolt J, Sharma A. Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen [J]. Engineering Fracture Mechanics, 2012, 85(1): 88―102.
    [14]
    Zhou X Q, Hao H. Mesoscale modeling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21/22): 2013―2026.
    [15]
    Zhou X Q, Hao H. Modelling of compressive behavior of concrete-like materials at high strain rate [J]. International Journal of Solids and Structures, 2008, 45(17): 4648―4661.
    [16]
    Cusatis G. Strain-rate effects on concrete behavior [J]. International Journal of Impact Engineering, 2011, 38(4): 162―170.
    [17]
    Pedersen R R, Simone A, Sluys L J. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete [J]. Cement and Concrete Research, 2013, 50(1): 74―87.
    [18]
    Qin C, Zhang C H. Numerical study of dynamic behavior of concrete by meso-scale particle element modeling [J]. International Journal of Impact Engineering, 2011, 38(12): 1011―1021.
    [19]
    Grassl P, Jirásek M. Damage-plastic model for concrete failure [J]. International Journal of Solids and Structures, 2006, 43(22/23): 7166―7196.
    [20]
    Badel P, Godard V, Leblond J B. Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete [J]. International Journal of Solids and Structures, 2007, 44(18): 5848―5874.
    [21]
    Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41(3): 339―358.
    [22]
    Lubliner J, Oliver J, Oller S, Ońate E. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299―326.
    [23]
    Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892―900.
    [24]
    Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425―450.
    [25]
    Tedesco J W, Hughes M L, Ross C A. Numerical simulation of high strain rate concrete compression testes [J]. Computers and Structures, 1994, 51(1): 65―77.
    [26]
    Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. International Journal of Solids and Structures, 1996, 33(23): 3363―3375.
    [27]
    Hentz S, Donźe F V, Daudeville L. Discrete element modeling of concrete submitted to dynamic loading at high strain rates [J]. Computers and Structures, 2004, 82(29/30): 2509―2524.
    [28]
    Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735―739.
    [29]
    Pyo S, El-Tawil S. Crack velocity-dependent dynamic tensile behavior of concrete [J]. International Journal of Impact Engineering, 2013, 55(1): 63―70.
    [30]
    Riedel W, Wicklein M, Thoma K. Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35(3): 155―171.
    [31]
    Ožbolt J, Sharma A, Reinhardt H W. Dynamic fracture of concrete-compact tension specimen [J]. International Journal of Solids and Structures, 2011, 48(10): 1534―1543.
    [32]
    Tehrani F F, Absi J, Allou F, Petit C H. Heterogeneous numerical modeling of asphalt concrete through use of a biphsic approach: Porous matrix/inclusion [J]. Computational Materials Science, 2013, 69(1): 186―196.
    [33]
    Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading [J]. Cement and Concrete Research, 2011, 41(11): 1130―1142.
    [34]
    Du Xiuli, Jin Liu, Ma Guowei. A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of RC members [J]. Internatonal Journal of Damage Mechanics, 2012, 22(5): 617―642.
  • Related Articles

    [1]QIN Yuan, ZHANG Yuan, SU Jiang-xia, CAO Jing, DUAN Ming-han, ZHOU Heng, FANG Jian-yin. NUMERICAL ANALYSIS OF TENSILE FAILURE OF HETEROGENEOUS SFRCC[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0654
    [2]JIN Liu, YANG Wang-xian, YU Wen-xuan, DU Xiu-li. DYNAMIC COMPRESSIVE FAILURE AND SIZE EFFECT IN LIGHTWEIGHT AGGREGATE CONCRETE BASED ON MESO-SCALE SIMULATION[J]. Engineering Mechanics, 2020, 37(3): 56-65. DOI: 10.6052/j.issn.1000-4750.2019.01.0012
    [3]JIN Liu, YU Wen-xuan, DU Xiu-li, ZHANG Shuai, LI Dong. MESO-SCALE SIMULATION OF SIZE EFFECT OF DYNAMIC TENSILE STRENGTH OF CONCRETE UNDER LOW STRAIN RATES[J]. Engineering Mechanics, 2019, 36(8): 59-69,78. DOI: 10.6052/j.issn.1000-4750.2018.03.0144
    [4]JIN Liu, SU Xiao, DU Xiu-li. MESO-SCALE SIMULATIONS ON FLEXURAL FAILURE AND SIZE EFFECT OF REINFORCED CONCRETE BEAMS[J]. Engineering Mechanics, 2018, 35(10): 27-36. DOI: 10.6052/j.issn.1000-4750.2017.06.0436
    [5]DU Xiu-li, JIN Liu. NUMERICAL SIMULATION OF THREE-DIMENSIONAL MESO-MECHANICAL MODEL FOR DAMAGE PROCESS OF HETEROGENEOUS CONCRETE[J]. Engineering Mechanics, 2013, 30(2): 82-88. DOI: 10.6052/j.issn.1000-4750.2011.07.0445
    [6]WANG Li, LI Shi-bo. NUMERICAL SIMULATION OF DAMAGE PATTERN GROWTH IN QUASI-BRITTLE MATERIALS[J]. Engineering Mechanics, 2011, 28(4): 238-244,.
    [7]JIAO Chu-jie, LI Zhen, GAO Le. NUMERICAL SIMULATION OF SHPB TEST OF CONCRETE[J]. Engineering Mechanics, 2010, 27(增刊Ⅱ): 196-200.
    [8]WANG Xue-bin, ZHANG Jun. NUMERICAL SIMULATION OF FAILURE PROCESS OF THREE-POINT BENDING CONCRETE BEAM CONSIDERING HETEROGENEITY OF TENSILE STRENGTH AND POST-PEAK SOFTENING CURVE[J]. Engineering Mechanics, 2009, 26(12): 155-160.
    [9]ZHANG Xian-min, TONG Deng-ke, HU Ai-mei. NUMERICAL SIMULATION OF COALBED METHANE PATTERN EXPLOITATION IN QINSHUI BASIN[J]. Engineering Mechanics, 2008, 25(12): 218-222.
    [10]LU Ying-fa, LIU De-fu, TIAN Bin, SHAO Jian-fu. GENERALIZED CAP MODEL AND NUMERICAL SIMULATION[J]. Engineering Mechanics, 2006, 23(11): 9-13,2.
  • Cited by

    Periodical cited type(15)

    1. 史利伟,李敏. 材料的率相关性对钢筋混凝土桥梁抗震性能的影响. 山西建筑. 2024(20): 153-156 .
    2. 肖诗云,王杨. 基于率相关内聚力本构模型的混凝土细观单轴受拉性能. 东北大学学报(自然科学版). 2023(11): 1647-1654+1662 .
    3. 吴春力,李顺才,赵云龙,Slatin Vadim. 声速及加载速率对混凝土强度及声发射特征影响的试验研究. 甘肃科学学报. 2021(01): 63-69 .
    4. 金浏,杨旺贤,余文轩,杜修力. 基于细观模拟的轻骨料混凝土破坏行为及尺寸效应研究. 防灾减灾工程学报. 2021(01): 91-99 .
    5. 金浏,杨旺贤,余文轩,杜修力. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析. 工程力学. 2020(03): 56-65 . 本站查看
    6. 白金超,成云海,郑强强,李峰辉,李波,吴斐. 干、湿喷混凝土受载力学特性及破坏机制. 煤炭学报. 2020(08): 2777-2786 .
    7. 郭瑞奇,任辉启,龙志林,吴祥云,姜锡权. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究. 爆炸与冲击. 2020(09): 18-31 .
    8. 金浏,余文轩,杜修力,张帅,李冬. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟. 工程力学. 2019(08): 59-69+78 . 本站查看
    9. 金浏,余文轩,杜修力,张帅,杨旺贤,李冬. 基于细观模拟的混凝土动态压缩强度尺寸效应研究. 工程力学. 2019(11): 50-61 . 本站查看
    10. 满轲,刘晓丽,宫凤强,马洪素,王驹. 不同赋存深度新疆天湖花岗岩的动态拉伸力学特性研究. 工程力学. 2018(03): 200-209 . 本站查看
    11. 崔云璇,应黎坪,陈曦昀,彭一江. 不同应变率下再生混凝土动态力学性能分析. 广西大学学报(自然科学版). 2018(04): 1547-1553 .
    12. 胡大琳,张立兴,陈定市. 混凝土三维细观随机模型的建立和有限元剖分. 交通运输工程学报. 2018(05): 1-11 .
    13. 雷光宇,韩霁昌,党发宁,李娟. 预静载对细观混凝土动态力学特性的数值试验研究. 水利与建筑工程学报. 2016(03): 55-58 .
    14. 杜修力,金浏. 细观分析方法在混凝土物理/力学性质研究方面的应用. 水利学报. 2016(03): 355-371 .
    15. 崔健,刘冰,杜成斌,孙立国. 混凝土类脆性材料动强度提高的机理试验. 中州煤炭. 2016(04): 46-50 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (411) PDF downloads (119) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return