Citation: | WAN Hua-ping, QI Shang-jin, ZHANG Zi-nan, GE Hui-bin, LUO Yao-zhi, REN Wei-xin. ANALYTICAL METHOD FOR GLOBAL SENSITIVITY ANALYSIS OF STRUCTURES BASED ON GENERALIZED CO-GAUSSIAN PROCESS MODEL[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.02.0088 |
Engineering structure parameters are unavoidably subjected to uncertainty. It is important for structural analysis and design to quantify the sensitivity of structural uncertain parameters. Global sensitivity analysis (GSA) is an effective approach to evaluate the sensitivity of uncertain parameters. However, the widely used Monte Carlo simulation (MCS) may be impractical for GSA of complex structures because it needs a large number of runs of the expensive finite element model to obtain a confident estimate of the sensitivity indices. The generalized co-Gaussian process surrogate model (GC-GPM) integrates high- and low-fidelity training samples, which has advantages of high computational accuracy and efficiency. This paper proposes an analytical GSA method based on GC-GPM, which converts high-dimensional integrals into one-dimensional integrals. The sensitivity indices can be analytically obtained. The effectiveness of the proposed analytical GSA method is verified with four-parameter function and borehole function, and the MCS is used for comparison. It can be concluded that the GC-GPM based GSA method has advantages of high computational accuracy and efficiency. Finally, the proposed method is applied to the GSA of the stability of a reticulated shell structure, and the sensitivities of structural uncertain parameters are effectively assessed.
[1] |
翁梦秀, 雷鹰. 考虑不确定性的结构损伤概率分析[J]. 工程力学, 2016, 33(增刊 1): 29 − 32. doi: 10.6052/j.issn.1000-4750.2015.05.S004
WENG Mengxiu, LEI Ying. Probability analysis of structure damage identification including system uncertainty [J]. Engineering Mechanics, 2016, 33(Suppl 1): 29 − 32. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.05.S004
|
[2] |
万志强, 陈建兵. 数据稀缺与更新条件下基于概率密度演化-测度变换的认知不确定性量化分析[J]. 工程力学, 2020, 37(1): 34 − 42. doi: 10.6052/j.issn.1000-4750.2019.02.0047
WAN Zhiqiang, CHEN Jianbing. Quantification of epistemic uncertainty due to data sparsity and updating based on the framework via synthesizing probability density evolution method and change of probability measure [J]. Engineering Mechanics, 2020, 37(1): 34 − 42. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0047
|
[3] |
谷慧, 李全旺, 侯冠杰. 碳化环境下混凝土结构耐久性模型的更新方法[J]. 工程力学, 2021, 38(5): 113 − 121. doi: 10.6052/j.issn.1000-4750.2020.06.0361
GU Hui, LI Quanwang, HOU Guanjie. Updating method for durability models of concrete structures in carbonation environment [J]. Engineering Mechanics, 2021, 38(5): 113 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0361
|
[4] |
韩旭, 向活跃, 李永乐. 考虑参数不确定性的列车-桥梁垂向耦合振动的PC-ARMAX代理模型研究[J]. 工程力学, 2021, 38(11): 180 − 188. doi: 10.6052/j.issn.1000-4750.2020.11.0812
HAN Xu, XIANG Huoyue, LI Yongle. Coupled vibration of vertical random vehicle-bridge system considering parameter uncertainty based on PC-ARMAX model [J]. Engineering Mechanics, 2021, 38(11): 180 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0812
|
[5] |
PRADLWARTER H J, SCHUËLLER G I. On advanced Monte Carlo simulation procedures in stochastic structural dynamics [J]. International Journal of Non-Linear Mechanics, 1997, 32(4): 735 − 744. doi: 10.1016/S0020-7462(96)00091-1
|
[6] |
WAN H P, REN W X. Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian process metamodel [J]. Journal of Structural Engineering, 2015, 141(6): 4014164. doi: 10.1061/(ASCE)ST.1943-541X.0001108
|
[7] |
罗琪, 何敏娟, 李征. 基于高斯过程的钢-木混合结构刚度比全局敏感性分析[J]. 土木工程学报, 2021, 54(8): 56 − 66. doi: 10.15951/j.tmgcxb.2021.08.007
LUO Qi, HE Minjuan, LI Zheng. Global sensitivity analysis of wall-to-frame stiffness ratio of timber-steel hybrid structure based on Gaussian-process [J]. China civil engineering journal, 2021, 54(8): 56 − 66. (in Chinese) doi: 10.15951/j.tmgcxb.2021.08.007
|
[8] |
LIU F C, WEI P F, TANG C H, et al. Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model [J]. Reliability Engineering & System Safety, 2019, 189: 287 − 298.
|
[9] |
万华平, 张梓楠, 葛荟斌, 等. 基于广义协同高斯过程模型的结构不确定性量化解析方法[J]. 工程力学, 2023, 40(3): 107 − 116. doi: 10.6052/j.issn.1000-4750.2021.09.0700
WAN Huaping, ZHANG Zinan, GE Huibin, et al. Analytical approach for structural uncertainty quantification based on generalized co-Gaussian process model [J]. Engineering Mechanics, 2023, 40(3): 107 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.09.0700
|
[10] |
WAN H P, ZHANG Z N, LUO Y Z, et al. Analytical uncertainty quantification approach based on adaptive generalized co-Gaussian process model [J]. International Journal for Numerical Methods in Engineering, 2022, 123(24): 6032 − 6051. doi: 10.1002/nme.7102
|
[11] |
SOBOL I M. Sensitivity estimates for nonlinear mathematical models [J]. Mathematical Modelling and Computational Experiments, 1993, 1(4): 407 − 414.
|
[12] |
WAN H P, TODD M D, REN W X. Statistical framework for sensitivity analysis of structural dynamic characteristics [J]. Journal of Engineering Mechanics, 2017, 143(9): 4017093. doi: 10.1061/(ASCE)EM.1943-7889.0001314
|
[13] |
OAKLEY J E, O'HAGAN A. Probabilistic sensitivity analysis of complex models: A Bayesian approach [J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2004, 66(3): 751 − 769. doi: 10.1111/j.1467-9868.2004.05304.x
|
[14] |
LI X M, WANG X, XIONG S F. A sequential design strategy for integrating low-accuracy and high-accuracy computer experiments [J]. Communications in Statistics-Simulation and Computation, 2023, 52(3): 817 − 824. doi: 10.1080/03610918.2020.1870692
|
[15] |
XIONG S F, QIAN P Z G, WU C F J. Sequential design and analysis of high-accuracy and low-accuracy computer codes [J]. Technometrics, 2013, 55(1): 37 − 46. doi: 10.1080/00401706.2012.723572
|
[16] |
GE H B, WAN H P, ZHENG Y F, et al. Experimental and numerical study on stability behavior of reticulated shell composed of plate members [J]. Journal of Constructional Steel Research, 2020, 171: 106102. doi: 10.1016/j.jcsr.2020.106102
|
[17] |
GE H B, WAN H P, LUO Y Z. Experimental investigation into flexural buckling of double-limb built-up plate members under compression [J]. Journal of Constructional Steel Research, 2021, 179: 106516. doi: 10.1016/j.jcsr.2020.106516
|