Citation: | ZHOU Zhou, YU Xiao-hui, LYU Da-gang, HAN Miao. EFFECTS OF CORROSION AND AFTERSHOCK ON STRUCTURAL DAMAGE AND FRAGILITY OF REINFORCED CONCRETE FRAME STRUCTURES[J]. Engineering Mechanics, 2023, 40(9): 203-213, 256. doi: 10.6052/j.issn.1000-4750.2022.09.0813 |
[1] |
金伟良, 吕清芳, 赵羽习, 等. 混凝土结构耐久性设计方法与寿命预测研究进展[J]. 建筑结构学报, 2007, 28(1): 7 − 13.
JIN Weiliang, LYU Qingfang, ZHAO Yuxi, et al. Research progress on the durability design and life prediction of concrete structures [J]. Journal of Building Structures, 2007, 28(1): 7 − 13. (in Chinese)
|
[2] |
彭小波, 李小军, 刘启方, 等. 汶川地震中建筑震害衰减特征及抗震性能分析[J]. 地震工程与工程振动, 2011, 31(3): 27 − 32.
PENG Xiaobo, LI Xiaojun, LIU Qifang, et al. Building damage attenuation and a seismic performance analysis in Wenchuan earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(3): 27 − 32. (in Chinese)
|
[3] |
吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10): 41 − 48.
LYU Dagang, YU Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 41 − 48. (in Chinese)
|
[4] |
于晓辉, 吕大刚. 基于地震易损性解析函数的概率地震风险应用研究[J]. 建筑结构学报, 2013, 34(10): 49 − 56.
YU Xiaohui, LYU Dagang. Application study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 49 − 56. (in Chinese)
|
[5] |
刘春阳, 孙鹏, 赵兴权. 消能限位型钢支撑抗震性能试验研究及结构地震易损性分析[J]. 工程力学, 2022, 39(5): 210 − 223. doi: 10.6052/j.issn.1000-4750.2021.03.0196
LIU Chunyang, SUN Peng, ZHAO Xingquan. Experimental study on seismic performance of energy dissipation and position limitation steel brace and structure seismic vulnerability analysis [J]. Engineering Mechanics, 2022, 39(5): 210 − 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0196
|
[6] |
刘流, 李英民, 姬淑艳. 掉层RC框架结构基于典型失效模式的失效概率评估[J]. 工程力学, 2020, 37(5): 74 − 81. doi: 10.6052/j.issn.1000-4750.2019.05.0244
LIU Liu, LI Yingmin, JI Shuyan. Failure probability evaluation of RC frame supported by foundations with different elevations based on typical failure modes [J]. Engineering Mechanics, 2020, 37(5): 74 − 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0244
|
[7] |
秦卿, 邱继生, 张程华, 等. 近海大气环境下多龄期典型钢筋混凝土剪力墙结构地震易损性研究[J]. 工业建筑, 2020, 50(12): 32 − 41.
QIN Qing, QIU Jisheng, ZHANG Chenghua, et al. Research on seismic fragility of multi-aged RC shear wall structures in offshore atmospheric environment [J]. Industrial Construction, 2020, 50(12): 32 − 41. (in Chinese)
|
[8] |
代旷宇, 于晓辉, 李雨适, 等. 锈蚀钢筋混凝土结构地震易损性分析[J]. 建筑结构学报, 2022, 43(8): 20 − 31.
DAI Kuangyu, YU Xiaohui, LI Yushi, et al. Seismic fragility analysis of reinforced concrete structures considering reinforcement corrosion [J]. Journal of Building Structures, 2022, 43(8): 20 − 31. (in Chinese)
|
[9] |
代旷宇, 于晓辉, 吕大刚, 等. 采用光圆钢筋配筋的锈蚀RC框架结构抗震性能分析: 以新西兰结构为例[J]. 土木工程学报, 2020, 53(增刊 2): 53 − 60.
DAI Kuangyu, YU Xiaohui, LYU Dagang, et al. Seismic performance assessment of corroded RC frame structures with plain steel bars: A case study in New Zealand [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 53 − 60. (in Chinese)
|
[10] |
郑山锁, 杨威, 秦卿, 等. 基于氯盐最不利侵蚀下锈蚀RC框架结构时变地震易损性研究[J]. 振动与冲击, 2015, 34(7): 38 − 45.
ZHENG Shansuo, YANG Wei, QIN Qing, et al. Study on time-dependent seismic fragility analysis of RC frame structures corroded by the most disadvantageous chloride attack [J]. Journal of Vibration and Shock, 2015, 34(7): 38 − 45. (in Chinese)
|
[11] |
YU X H, DAI K Y, LI Y S. Variability in corrosion damage models and its effect on seismic collapse fragility of aging reinforced concrete frames [J]. Construction and Building Materials, 2021, 295: 123654. doi: 10.1016/j.conbuildmat.2021.123654
|
[12] |
YALCINER H, SENSOY S, EREN O. Seismic performance assessment of a corroded 50-year-old reinforced concrete building [J]. Journal of Structural Engineering, 2015, 141(12): 05015001. doi: 10.1061/(ASCE)ST.1943-541X.0001263
|
[13] |
ZHOU Z, XU H, GARDONI P, et al. Probabilistic demand models and fragilities for reinforced concrete frame structures subject to mainshock-aftershock sequences [J]. Engineering Structures, 2021, 245: 112904. doi: 10.1016/j.engstruct.2021.112904
|
[14] |
刘平, 王超, 张健新. 主余震作用下高强钢筋混凝土框架的易损性分析[J]. 世界地震工程, 世界地震工程, 2022, 38(1): 20 − 27.
LIU Ping, WANG Chao, ZHANG Jianxin. Fragility analysis of high strength reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences [J]. World Earthquake Engineering, 2022, 38(1): 20 − 27. (in Chinese)
|
[15] |
韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124 − 133. doi: 10.6052/j.issn.1000-4750.2019.01.0116
HAN Jianping, LI Jun. Seismic fragility analysis of low-ductile RC frame accounting for the influence of mainshock-aftershock sequences [J]. Engineering Mechanics, 2020, 37(2): 124 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0116
|
[16] |
徐龙河, 敬祺轲, 谢行思. 主余震下自复位支撑RC框架结构性能研究[J]. 工程力学, 2023, 40(5): 117 − 124. doi: 10.6052/j.issn.1000-4750.2021.10.0824
XU Longhe, JING Qike, XIE Xingsi. Performance study on RC frame structures with self-centering braces under main- and after-earthquakes [J]. Engineering Mechanics, 2023, 40(5): 117 − 124. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0824
|
[17] |
周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. 工程力学, 2018, 35(11): 134 − 145. doi: 10.6052/j.issn.1000-4750.2017.07.0588
ZHOU Zhou, YU Xiaohui, LYU Dagang. Fragility analysis and safety evaluation of reinforced concrete frame structures subjected to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2018, 35(11): 134 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0588
|
[18] |
周洲, 于晓辉, 吕大刚. 主余震序列作用下结构增量损伤比研究[J]. 工程力学, 2021, 38(11): 147 − 159. doi: 10.6052/j.issn.1000-4750.2020.11.0791
ZHOU Zhou, YU Xiaohui, LYU Dagang. Study on incremental damage ratios of structures due to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2021, 38(11): 147 − 159. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0791
|
[19] |
于晓辉, 周洲, 吕大刚. 钢筋混凝土框架结构的损伤状态相关余震易损性分析[J]. 建筑结构学报, 2022, 43(4): 8 − 16.
YU Xiaohui, ZHOU Zhou, LYU Dagang. Damage-state-dependent aftershock fragility analysis for reinforced concrete frame structures [J]. Journal of Building Structures, 2022, 43(4): 8 − 16. (in Chinese)
|
[20] |
DI TRAPANI F, MALAVISI M. Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach [J]. Bulletin of Earthquake Engineering, 2019, 17(1): 211 − 235. doi: 10.1007/s10518-018-0445-2
|
[21] |
YU X H, ZHOU Z, DU W Q, et al. Development of fragility surfaces for reinforced concrete buildings under mainshock-aftershock sequences [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(15): 3981 − 4000.
|
[22] |
ABDELNABY A E. Fragility curves for RC frames subjected to Tohoku mainshock-aftershocks sequences [J]. Journal of Earthquake Engineering, 2018, 22(5): 902 − 920. doi: 10.1080/13632469.2016.1264328
|
[23] |
YU X H, DAI K Y, LI Y S, et al. Seismic resilience assessment of corroded reinforced concrete structures designed to the Chinese codes [J]. Earthquake Engineering and Engineering Vibration, 2021, 20(2): 303 − 316. doi: 10.1007/s11803-021-2021-z
|
[24] |
邢国华, 杨成雨, 常召群, 等. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87 − 95. doi: 10.6052/j.issn.1000-4750.2018.07.0376
XING Guohua, YANG Chengyu, CHANG Zhaoqun, et al. Study on modified axial-shear-flexure interaction model for corroded reinforced concrete columns [J]. Engineering Mechanics, 2019, 36(8): 87 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0376
|
[25] |
曹琛, 郑山锁, 胡卫兵, 等. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125 − 134. doi: 10.6052/j.issn.1000-4750.2018.01.0085
CAO Chen, ZHENG Shansuo, HU Weibing, et al. A restoring force model of corroded reinforced concrete frame beams in offshore atmospheric environment [J]. Engineering Mechanics, 2019, 36(4): 125 − 134. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0085
|
[26] |
GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves [J]. Journal of Structural Engineering, 2010, 136(12): 1497 − 1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260
|
[27] |
DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars [J]. Magazine of Concrete Research, 2005, 57(3): 135 − 147. doi: 10.1680/macr.2005.57.3.135
|
[28] |
CAIRNS J, PLIZZARI G A, DU Y G, et al. Mechanical properties of corrosion-damaged reinforcement [J]. ACI Materials Journal, 2005, 102(4): 256 − 264.
|
[29] |
CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams: Modeling guidelines [J]. Journal of Structural Engineering, 2004, 130(8): 1214 − 1224. doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214)
|
[30] |
PITILAKIS K D, KARAPETROU S T, FOTOPOULOU S D. Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings [J]. Bulletin of Earthquake Engineering, 2014, 12(4): 1755 − 1776. doi: 10.1007/s10518-013-9575-8
|
[31] |
JEON J S, DESROCHES R, LOWES L N, et al. Framework of aftershock fragility assessment-case studies: Older California reinforced concrete building frames [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(15): 2617 − 2636.
|
[32] |
KUNNATH S K, REINHORN A M, LOBO R F. IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures [M]. Buffalo, NY: National Center for Earthquake Engineering Research, 1992.
|
[33] |
SINGHAL A, KIREMIDJIAN A S. Method for probabilistic evaluation of seismic structural damage [J]. Journal of Structural Engineering, 1996, 122(12): 1459 − 1467. doi: 10.1061/(ASCE)0733-9445(1996)122:12(1459)
|
[34] |
RAMAMOORTHY S K, GARDONI P, BRACCI J M. Probabilistic demand models and fragility curves for reinforced concrete frames [J]. Journal of Structural Engineering, 2006, 132(10): 1563 − 1572. doi: 10.1061/(ASCE)0733-9445(2006)132:10(1563)
|