Citation: | YU Jin-ge, MA Zhan-yuan, ZHANG Ying, YANG Xi-ming, HAN Chao, XU Xiang-hui. SIMULATION AND MEASUREMENT OF MULTI-FREQUENCY COMBINED WAVEFORM GUST FIELD[J]. Engineering Mechanics, 2024, 41(3): 250-256. DOI: 10.6052/j.issn.1000-4750.2022.04.0356 |
The device parameters, such as the number, span, chord length and spacing of generator vanes of the FL-51 wind tunnel gust generator are selected by numerical simulation methods. The generator adopts the independent driving form of the hydraulic swing cylinder, which can simulate the multi-frequency combined motion of various waveforms such as sine wave, triangle wave and random wave. At the same time, it can reduce the installation of transmission and improve the performance of the generator. Using the flow display technology to study the generation and development process of the gust flow field can realize the refinement and visualization characteristics of the gust flow field. The results of the gust field calibration show that: the blade can achieve a swing frequency of 0 Hz-15 Hz, and the sinusoidal flow field generated by the generator is relatively uniform within the calibration range; when the incoming wind speed is 40 m/s, the blade swing frequency is 10 Hz and the swing angle at 15°, the maximum gust amplitude is 8.5 m/s. The results of ground test and flow field calibration show that: the gust field simulation technology proposed can realize multi-frequency and multi-waveform combined motion in low-speed wind tunnels, and provide complex gust flow field for wind tunnel test.
[1] |
杨希明, 刘南, 郭承鹏, 等. 飞行器气动弹性风洞试验技术综述[J]. 空气动力学学报, 2018, 36(6): 995 − 1008.
YANG Ximing, LIU Nan, GUO Chengpeng, et al. A survey of aeroelastic wind tunnel test technology of flight vehicles [J]. Acta Aerodynamica Sinica, 2018, 36(6): 995 − 1008. (in Chinese)
|
[2] |
李勇. 低速风洞垂直阵风发生技术研究[D]. 天津: 中国民航大学, 2019.
LI Yong. Study on vertical gust generation technology in low speed wind tunnel [D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese)
|
[3] |
胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1 − 27.
HU Haiyan, ZHAO Yonghui, HUANG Rui. Studies on aeroelastic analysis and control of aircraft structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1 − 27. (in Chinese)
|
[4] |
朱博, 刘琴, 屈晓力, 等. 阵风发生装置流场测量与分析[J]. 实验流体力学, 2013, 27(6): 76 − 80.
ZHU Bo, LIU Qin, QU Xiaoli, et al. Measurement and analysis of a gust generator flow field in wind tunnel [J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 76 − 80. (in Chinese)
|
[5] |
MOULIN B, KARPEL M. Gust loads alleviation using special control surfaces [J]. Journal of Aircraft, 2007, 44(1): 17 − 25. doi: 10.2514/1.19876
|
[6] |
KUZMINA S I, ISHMURATOV F, ZICHENKOV M, et al. Integrated numerical and experimental investigations of the active/passive aeroelastic concepts on the European research aeroelastic model (EuRAM) [J]. ASD Journal, 2011, 2(2): 31 − 51.
|
[7] |
LANCELOT P M G J, SODJA J, WERTER N P M, et al. Design and Testing of a low subsonic wind tunnel gust generator [C]// In Proceedings of IFASD 2015. Saint Petersburg, Russia: International Forum on Aeroelasticity and Structural Dynamics, 2015: 1 − 18.
|
[8] |
FONTE F, RICCOBENE L, RICCI S, et al. Desing, manufacturing and validation of a gust generator for wind tunnel test of a large scale aeroelastic model [C]// Proceedings of ICAS 2016. Daejeon, South korea: The 30th International Aeronautical Science and Technology Congress, 2016: 1 − 9.
|
[9] |
MILLER J A, FEJER A A. Transition phenomena in oscillating boundary-layer flows [J]. Journal of Fluid Mechanics, 1964, 18(3): 438 − 448. doi: 10.1017/S0022112064000325
|
[10] |
SCHWEIGER J, SULEMAN A, KUZMINA S, et al. MDO concepts for an European research project on active aeroelastic aircraft [C]// 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta: AIAA, 2002: 5403.
|
[11] |
RICCI S, SCOTTI A, MALECEK J, et al. Experimental investigations of a vibration suppression system for a three-surface aeroelastic model [C]// 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: AIAA, 2005: 2232.
|
[12] |
RICCI S, SCOTTI A. Aeroelastic testing on a three surface airplane [C]// 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport: AIAA, 2006: 2189.
|
[13] |
RICCI S, SCOTTI A. Gust response alleviation on flexible aircraft using multi-surface control [C]// 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando: AIAA, 2010: 3117.
|
[14] |
陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250 − 2256.
CHEN Lei, WU Zhigang, YANG Chao, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250 − 2256. (in Chinese)
|
[15] |
陈磊, 吴志刚, 杨超, 等. 弹性机翼阵风响应和载荷减缓与风洞试验验证[J]. 工程力学, 2011, 28(6): 212 − 218.
CHEN Lei, WU Zhigang, YANG Chao, et al. Gust response, load alleviation and wind-tunnel experiment verification of elastic wing [J]. Engineering Mechanics, 2011, 28(6): 212 − 218. (in Chinese)
|
[16] |
杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1): 184 − 192.
YANG Junbin, WU Zhigang, DAI Yuting, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 184 − 192. (in Chinese)
|
[17] |
杨阳, 杨超, 吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4): 106 − 112, 121. doi: 10.13465/j.cnki.jvs.2020.04.013
YANG Yang, YANG Chao, WU Zhigang. A design of gust alleviation control system based on test of actuator’s dynamic characteristics [J]. Journal of Vibration and Shock, 2020, 39(4): 106 − 112, 121. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.04.013
|
[18] |
梁鉴, 唐建平, 杨远志, 等. FL-12风洞突风试验装置研制[J]. 实验流体力学, 2012, 26(3): 95 − 100.
LIANG Jian, TANG Jianping, YANG Yuanzhi, et al. The development of gust generators in FL-12 wind tunnel [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 95 − 100. (in Chinese)
|
[19] |
金华, 王辉, 张海酉, 等. FL-13风洞突风发生装置研究[J]. 空气动力学学报, 2016, 34(1): 40 − 46.
JIN Hua, WANG Hui, ZHANG Haiyou, et al. Investigation on gust response test apparatus in FL-13 wind tunnel [J]. Acta Aerodynamica Sinica, 2016, 34(1): 40 − 46. (in Chinese)
|
[20] |
张铁军, 王娜, 董军. 多重网格技术在民机粘性流场数值模拟中的应用研究[J]. 气动研究与实验, 2009, 27(2): 5 − 9.
ZHANG Tiejun, WANG Na, DONG Jun. Research on application of multi-grid technology in numerical simulation of viscous flow field of civil aircraft [J]. Aerodynamic Research & Experiment, 2009, 27(2): 5 − 9. (in Chinese)
|
[21] |
廖鹏, 傅继阳, 马文勇, 等. 风洞试验段闭口与开口模式下流场的数值模拟与实验研究[J]. 工程力学, 2022, 39(增刊 1): 164 − 172. doi: 10.6052/j.issn.1000-4750.2021.05.S032
LIAO Peng, FU Jiyang, MA Wenyong, et al. Numerical simulation and experimental study of flow field in closed and open wind tunnel test section [J]. Engineering Mechanics, 2022, 39(Suppl 1): 164 − 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.S032
|
[22] |
姚志勇, 张楠, 程泽农. 横风下移动列车非定常气动力计算[J]. 工程力学, 2020, 37(10): 238 − 246. doi: 10.6052/j.issn.1000-4750.2019.12.0730
YAO Zhiyong, ZHANG Nan, CHENG Zenong. Calculation of the unsteady aerodynamic forces on moving trains under crosswinds [J]. Engineering Mechanics, 2020, 37(10): 238 − 246. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0730
|