Citation: | DONG Hui-hui, GU Zhi-jun, DU Xiu-li, SU Can. STUDY ON SEISMIC PERFORMANCE OF DOUBLE-COLUMN ROCKING BENTS WITH ADDITIONAL BRACES UNDER NEAR-FIELD PULSE GROUND MOTIONS[J]. Engineering Mechanics, 2024, 41(5): 13-25. DOI: 10.6052/j.issn.1000-4750.2022.04.0337 |
To solve the issues of insufficient bearing and energy dissipation capacities of rocking bents, a double-column rocking bent structure with braces placed in chevron arrangement is developed in this study. The braces are pure energy dissipation ones or self-centering energy dissipation ones, installed between the cap beam and the foundation of the double-column rocking bent by connecting devices. To study the seismic performance of the double-column rocking bent structure with braces developed, its quasi-static analysis is carried out firstly. Taking the double-column cast-in-situ bent and the double-column rocking bent as the comparative model, the hysteretic behavior of the double-column rocking bent with additional braces are investigated; The dynamic time history analysis of these bents is carried out to explore the dynamic responses of the structures due to the near-field symmetrical pulse, to near-field asymmetrical pulse and to far-field non pulse ground motions. These results show that: the double-column rocking bent with additional braces still behaviors the rocking mechanism, which can effectively avoid the serious damage to the plastic hinge of column; at the same time, the additional braces can significantly improve the bearing capacity and energy dissipation capacity of the bent and, reduce the displacement response of the bent; especially, the self-centering energy dissipation braces can also provide additional self-centering force for the bent, which can effectively improve the seismic performance of the bent.
[1] |
AASHTO, AASHTO LRFD Bridge Design Specification (2007 Version) [S]. Washington, D.C: American Association of State Highway and Transportation Officials, 2007.
|
[2] |
AASHTO LRFDSEIS−2011, AASHTO guide specifications for LRFD seismic bridge design (2nd edition; includes 2015 interim revisions) [S]. Washington, D.C: American Association of State Highway and Transportation Officials, 2011.
|
[3] |
GHOSH S K, DOWTY S, DASGUPTA P. Seismic design criteria [M]// Significant Changes to the Seismic Load Provisions of ASCE 7-10: An Illustrated Guide. Reston: ASCE Press, 2011: 385 − 511.
|
[4] |
ROJAHN C, MAYES R, ANDERSON D G, et al. Seismic design criteria for bridges and other highway structures [R]. Buffalo: National Center for Earthquake Engineering Research, 1997: 1 − 202.
|
[5] |
INSTITUTION B S. Eurocode 8: Design provisions for earthquake resistance of structures [S]. Dublin: European Commision, 1998.
|
[6] |
American Association of State Highway Officials. Standard specifications for highway bridges [S]. Washington, D.C: American Association of State Highway and Transportation Officials, 2022.
|
[7] |
CJJ 11−2011, 城市桥梁设计规范(2019年版)[S]. 北京: 中国建筑工业出版社, 2012.
CJJ 11−2011, Code for design of the municipal bridge [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
|
[8] |
JTG/T 2231-01−2020, 公路桥梁抗震设计规范[S]. 北京: 人民交通出版社, 2020.
JTG/T 2231-01−2020, Specifications for seismic design of highway bridges [S]. Beijing: China Communications Press, 2020. (in Chinese)
|
[9] |
韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30(12): 169 − 177. doi: 10.3969/j.issn.1001-7372.2017.12.018
HAN Qiang, JIA Zhenlei, HE Weili, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge [J]. China Journal of Highway and Transport, 2017, 30(12): 169 − 177. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.12.018
|
[10] |
徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177 − 187. doi: 10.6052/j.issn.1000-4750.2018.03.0107
XU Longhe, WU Hu. Seismic performance study along the transverse direction of cable-stayed bridges with self-centering energy dissipation braces [J]. Engineering Mechanics, 2019, 36(4): 177 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0107
|
[11] |
吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941 − 948. doi: 10.3969/j.issn.0253-374x.2011.07.001
LYU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: Earthquake resilient structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941 − 948. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001
|
[12] |
周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09
ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
|
[13] |
孙治国, 赵泰儀, 石岩, 等. 摇摆-自复位桥墩抗震性能数值建模方法研究[J]. 应用基础与工程科学学报, 2019, 27(6): 1357 − 1369. doi: 10.16058/j.issn.1005-0930.2019.06.015
SUN Zhiguo, ZHAO Taiyi, SHI Yan, et al. Research on numerical modeling method for rocking self-centering bridge piers [J]. Journal of Basic Science and Engineering, 2019, 27(6): 1357 − 1369. (in Chinese) doi: 10.16058/j.issn.1005-0930.2019.06.015
|
[14] |
石岩, 钟正午, 秦洪果, 等. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学, 2021, 38(8): 166 − 177, 203. doi: 10.6052/j.issn.1000-4750.2020.08.0575
SHI Yan, ZHONG Zhengwu, QIN Hongguo, et al. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with lead-extrusion dampers [J]. Engineering Mechanics, 2021, 38(8): 166 − 177, 203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575
|
[15] |
HOUSNER G W. The behavior of inverted pendulum structures during earthquakes [J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403 − 417. doi: 10.1785/BSSA0530020403
|
[16] |
MANDER J B, CHENG C T. Seismic resistance of bridge piers based on damage avoidance design [R]. New York: National Center for Earthquake Engineering Research, 1997: 109 − 109.
|
[17] |
PALERMO A, PAMPANIN S, CALVI G M. Concept and development of hybrid solutions for seismic resistant bridge systems [J]. Journal of Earthquake Engineering, 2005, 9(6): 899 − 921.
|
[18] |
PALERMO A, PAMPANIN S, MARRIOTT D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections [J]. Journal of Structural Engineering, 2007, 133(11): 1648 − 1661. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1648)
|
[19] |
郭佳, 辛克贵, 何铭华, 等. 自复位桥梁墩柱结构抗震性能试验研究与分析[J]. 工程力学, 2012, 29(增刊 1): 29 − 34, 45. doi: 10.6052/j.issn.1000-4750.2011.11.S036
GUO Jia, XIN Kegui, HE Minghua, et al. Experimental study and analysis on the seismic performance of a self-centering bridge pier [J]. Engineering Mechanics, 2012, 29(Suppl 1): 29 − 34, 45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.11.S036
|
[20] |
何铭华, 辛克贵, 郭佳, 等. 自复位桥墩的内禀侧移刚度和滞回机理研究[J]. 中国铁道科学, 2012, 33(5): 22 − 28. doi: 10.3969/j.issn.1001-4632.2012.05.04
HE Minghua, XIN Kegui, GUO Jia, et al. Research on the intrinsic lateral stiffness and hysteretic mechanics of self-centering pier [J]. China Railway Science, 2012, 33(5): 22 − 28. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.05.04
|
[21] |
何铭华, 辛克贵, 郭佳. 新型自复位桥梁墩柱节点的局部稳定性研究[J]. 工程力学, 2012, 29(4): 122 − 127.
HE Minghua, XIN Kegui, GUO Jia. Local stability study of new bridge piers with self-centering joints [J]. Engineering Mechanic, 2012, 29(4): 122 − 127. (in Chinese)
|
[22] |
MARRIOTT D, PAMPANIN S, PALERMO A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters [J]. Earthquake Engineering & Structural Dynamics, 2009, 38(3): 331 − 354.
|
[23] |
MARRIOTT D, PAMPANIN S, PALERMO A. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(15): 1723 − 1741.
|
[24] |
GUO T, CAO Z L, XU A K, et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability [J]. Journal of Structural Engineering, 2016, 142(1): 04015088. doi: 10.1061/(ASCE)ST.1943-541X.0001357
|
[25] |
杜修力, 周雨龙, 韩强, 等. 摇摆桥墩的研究综述[J]. 地震工程与工程振动, 2018, 38(5): 1 − 11. doi: 10.13197/j.eeev.2018.05.1.duxl.001
DU Xiuli, ZHOU Yulong, HAN Qiang, et al. State-of-the-art on rocking piers [J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(5): 1 − 11. (in Chinese) doi: 10.13197/j.eeev.2018.05.1.duxl.001
|
[26] |
陈敬一, 杜修力, 韩强, 等. 摇摆双层桥梁地震反应及抗倒塌能力分析[J]. 工程力学, 2020, 37(10): 56 − 69. doi: 10.6052/j.issn.1000-4750.2019.10.0647
CHEN Jingyi, DU Xiuli, HAN Qiang, et al. Analysis of seismic response and overturning resistance of rocking double-deck bridge system [J]. Engineering Mechanics, 2020, 37(10): 56 − 69. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0647
|
[27] |
周雨龙, 杜修力, 韩强. 双柱式摇摆桥墩结构体系地震反应和倒塌分析[J]. 工程力学, 2019, 36(7): 136 − 145. doi: 10.6052/j.issn.1000-4750.2018.04.0224
ZHOU Yulong, DU Xiuli, HAN Qiang. Seismic response and overturning of double-column rocking column bridge system [J]. Engineering Mechanics, 2019, 36(7): 136 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0224
|
[28] |
韩强, 贾振雷, 周雨龙, 等. 震后可恢复功能桥梁结构之摇摆桥梁研究综述[J]. 中国公路学报, 2021, 34(2): 118 − 133. doi: 10.3969/j.issn.1001-7372.2021.02.004
HAN Qiang, JIA Zhenlei, ZHOU Yulong, et al. Review of seismic resilient bridge structures: Rocking bridges [J]. China Journal of Highway and Transport, 2021, 34(2): 118 − 133. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.004
|
[29] |
刘柯, 韩强, 周雨龙, 等. 可复位桥梁外剪力键性能试验及承载能力评估[J]. 工程力学, 2016, 33(9): 171 − 178, 211. doi: 10.6052/j.issn.1000-4750.2015.02.0120
LIU Ke, HAN Qiang, ZHOU Yulong, et al. Behavior experiment and capacity evaluation of resilient exterior shear key of bridges [J]. Engineering Mechanics, 2016, 33(9): 171 − 178, 211. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.02.0120
|
[30] |
董慧慧. 自复位耗能支撑桥梁结构体系及其性能抗震设计方法[D]. 北京: 北京工业大学, 2018.
DONG Huihui. Seismic performance and design method of bridges with SCEBs [J]. Beijing: Beijing University of Technology, 2018. (in Chinese)
|
[31] |
DONG Huihui, DU Xiuli, HAN Qiang, et al. Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces [J]. Bulletin of Earthquake Engineering, 2019, 17(6): 3255 − 3281. doi: 10.1007/s10518-019-00586-4
|
[32] |
ROH M, REINHORN A M. Nonlinear static analysis of structures with rocking columns [J]. Journal of Structural Engineering, 2010, 136(5): 532 − 542. doi: 10.1061/(ASCE)ST.1943-541X.0000154
|
[33] |
ROH M, REINHORN A M. Analytical modeling of rocking elements [J]. Engineering Structures, 2009, 31(5): 1179 − 1189. doi: 10.1016/j.engstruct.2009.01.014
|
[34] |
RON M, REINHORN A M. Modeling and seismic response of structures with concrete rocking columns and viscous dampers [J]. Engineering Structures, 2010, 32(8): 2096 − 2107. doi: 10.1016/j.engstruct.2010.03.013
|
[35] |
LI Chao, HAO Hong, BI Kaiming. Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading [J]. Engineering Structures, 2017, 148: 373 − 386. doi: 10.1016/j.engstruct.2017.06.062
|
[36] |
XU Longhe, LIU Jialin, LI Zhongxian. Cyclic behaviors of steel plate shear wall with self-centering energy dissipation braces [J]. Journal of Constructional Steel Research, 2019, 153: 19 − 30. doi: 10.1016/j.jcsr.2018.09.030
|
[37] |
HAN Qiang, JIA Zhenlei, XU Kun, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience [J]. Engineering Structures, 2019, 188: 218 − 232. doi: 10.1016/j.engstruct.2019.03.024
|
[38] |
孙治国, 谷明洋, 司炳君, 等. 外置角钢摇摆-自复位双柱墩抗震性能分析[J]. 中国公路学报, 2017, 30(12): 40 − 49. doi: 10.3969/j.issn.1001-7372.2017.12.005
SUN Zhiguo, GU Mingyang, SI Bingjun, et al. Seismic behavior analyses of rocking self-centering double column bridge bents using external angles [J]. China Journal of Highway and Transport, 2017, 30(12): 40 − 49. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.12.005
|
[39] |
孙治国, 王东升, 杜修力, 等. 钢筋混凝土桥墩塑性铰区约束箍筋用量研究[J]. 中国公路学报, 2010, 23(3): 48 − 57. doi: 10.3969/j.issn.1001-7372.2010.03.008
SUN Zhiguo, WANG Dongsheng, DU Xiuli, et al. Research on amount of confining reinforcement in potential plastic hinge regions of RC bridge columns [J]. China Journal of Highway and Transport, 2010, 23(3): 48 − 57. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.03.008
|
[40] |
ASSOCIATION J R. Standard specifications for highway bridges [S]. Washington, D.C: American Association of State Highway and Transportation Officials, 1996.
|
[41] |
张育智. 摇摆自复位高墩高阶效应研究[J]. 振动与冲击, 2018, 37(24): 66 − 71.
ZHANG Yuzhi. A study on the higher mode effect of rocking self-centering tall piers [J]. Journal of Vibration and Shock, 2018, 37(24): 66 − 71. (in Chinese)
|
[42] |
黄麟, 郭展, 陈誉, 等. 新型摇摆自复位桥墩振动台试验研究[J]. 工业建筑, 2020, 50(9): 83 − 88, 117. doi: 10.13204/j.gyjzg201906300001
HUANG Lin, GUO Zhan, CHEN Yu, et al. Shaking table test study on the new rocking self-centering bridge piers [J]. Industrial Construction, 2020, 50(9): 83 − 88, 117. (in Chinese) doi: 10.13204/j.gyjzg201906300001
|