Citation: | ZHANG Fu-rong, ZHOU Hui-meng, ZHANG Bo, SONG Wei-xu, WANG Tao. REAL-TIME ITERATIVE CONTROL METHOD RESEARCH OF SHAKING TABLE[J]. Engineering Mechanics, 2024, 41(3): 187-198, 240. DOI: 10.6052/j.issn.1000-4750.2022.03.0265 |
Offline iterative control (ICS) is often used in shaking table test to accurately reproduce earthquake waveform. However, multiple iterations will cause cumulative damages to vulnerable test specimens, and the continuously changing dynamic characteristics of the nonlinear test specimen will also lead to decrease of control accuracy of the ICS. To solve the problems, a high-accuracy real-time iterative control method (HRICS) based on system matrix correction is proposed. This method identifies the system matrix online upon the real-time data measured during the loading process, then selects the correction strategy accordingly, and finally evaluates the identification accuracy of system matrix by matrix accuracy evaluation indices. If the system matrix accuracy meets the requirement, the system matrix is updated upon frames or frequency points correction strategy, so that the response signal can reproduce the target waveform with high accuracy. The HRICS method is attested by shaking table test, and the control performance under nonlinear test body is studied by numerical simulation. The results indicate that the HRICS method using the frequency point correction strategy shows the best control effect. The reproduction accuracy of the HRICS method is significantly better than that of the ICS method after its first iteration.
[1] |
GAO C H, YUAN X B, WANG J Q, et al. Recent progress on control techniques of shaking table and array systems in China: An overview [J]. American Journal of Civil Engineering and Architecture, 2020, 8(3): 119 − 130. doi: 10.12691/ajcea-8-3-5
|
[2] |
唐贞云, 李振宝, 纪金豹, 等. 地震模拟振动台控制系统的发展[J]. 地震工程与工程振动, 2009, 29(6): 162 − 169. doi: 10.13197/j.eeev.2009.06.001
TANG Zhenyun, LI Zhenbao, JI Jinbao, et al. Development in shaking table control system [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(6): 162 − 169. (in Chinese) doi: 10.13197/j.eeev.2009.06.001
|
[3] |
申民宇, 祝磊, 贾军波, 等. 海上风力塔架结构模型振动台试验研究[J]. 工程力学, 2022, 39(2): 85 − 95. doi: 10.6052/j.issn.1000-4750.2021.01.0015
SHEN Minyu, ZHU Lei, JIA Junbo, et al. Shaking table test of offshore wind turbine supporting tower [J]. Engineering Mechanics, 2022, 39(2): 85 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0015
|
[4] |
程业, 潘旦光, 陈清军, 等. 地下空间结构对邻近地上结构地震反应影响振动台实验[J]. 工程力学, 2022, 39(1): 91 − 99. doi: 10.6052/j.issn.1000-4750.2020.12.0880
CHENG Ye, PAN Danguang, CHEN Qingjun, et al. Shaking table test on the influence of underground space structure on the seismic response of adjacent superstructure [J]. Engineering Mechanics, 2022, 39(1): 91 − 99. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0880
|
[5] |
谢文, 何天涛, 孙利民. 带剪切连梁双柱式桥墩地震响应特性振动台试验研究[J]. 工程力学, 2021, 38(5): 171 − 181. doi: 10.6052/j.issn.1000-4750.2020.06.0411
XIE Wen, HE Tiantao, SUN Limin. Shaking table tests on the seismic response characteristics of double-column piers with shear beams [J]. Engineering Mechanics, 2021, 38(5): 171 − 181. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0411
|
[6] |
何文福, 侯雨晴, 潘宁, 等. 摩擦曲面隔震结构动力学模型及地震响应分析[J]. 工程力学, 2021, 38(8): 111 − 120. doi: 10.6052/j.issn.1000-4750.2020.08.0551
HE Wenfu, HOU Yuqing, PAN Ning, et al. Dynamic model and seismic response analysis of friction surface isolation structures [J]. Engineering Mechanics, 2021, 38(8): 111 − 120. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0551
|
[7] |
王萌, 闫一, 傅萌, 等. 栓绑法固定馆藏文物的抗震有效性振动台试验研究[J]. 工程力学, 2022, 39(2): 208 − 221. doi: 10.6052/j.issn.1000-4750.2021.01.0047
WANG Meng, YAN Yi, FU Meng, et al. Study on seismic effectiveness of tie up method for fixing cultural relics based on shaking table tests [J]. Engineering Mechanics, 2022, 39(2): 208 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0047
|
[8] |
QU H L, HUANG X, GAO Y N, et al. Shaking table test of subgrade slope reinforced by gravity retaining wall with geogrids [J]. Earthquake Engineering and Engineering Vibration, 2022, 21(3): 715 − 727. doi: 10.1007/s11803-022-2108-1
|
[9] |
DONG J Y, WANG C, HUANG Z Q, et al. Shaking table model test to determine dynamic response characteristics and failure modes of steep bedding rock slope [J]. Rock Mechanics and Rock Engineering, 2022, 55(6): 3645 − 3658. doi: 10.1007/s00603-022-02822-x
|
[10] |
纪金豹, 李芳芳, 李振宝, 等. 地震模拟振动台台阵控制技术的研究与发展[J]. 结构工程师, 2012, 28(6): 96 − 101. doi: 10.3969/j.issn.1005-0159.2012.06.017
JI Jinbao, LI Fangfang, LI Zhenbao, et al. Research and advances on the control technology of the multiple shaking table array system [J]. Structural Engineers, 2012, 28(6): 96 − 101. (in Chinese) doi: 10.3969/j.issn.1005-0159.2012.06.017
|
[11] |
GÜNAY S, MOSALAM K M. Enhancement of real-time hybrid simulation on a shaking table configuration with implementation of an advanced control method [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(5): 657 − 675.
|
[12] |
栾强利, 陈章位, 徐进荣, 等. 地震模拟振动台三参量控制参数整定技术的研究[J]. 振动工程学报, 2014, 27(3): 416 − 425. doi: 10.3969/j.issn.1004-4523.2014.03.015
LUAN Qiangli, CHEN Zhangwei, XU Jinrong, et al. Three-variable control parameter tuning technology on seismic simulation shaking tables [J]. Journal of Vibration Engineering, 2014, 27(3): 416 − 425. (in Chinese) doi: 10.3969/j.issn.1004-4523.2014.03.015
|
[13] |
李振宝, 唐贞云, 纪金豹. 地震模拟振动台三参量控制算法超调修正[J]. 振动与冲击, 2010, 29(10): 211 − 215. doi: 10.3969/j.issn.1000-3835.2010.10.044
LI Zhenbao, TANG Zhenyun, JI Jinbao. Overshoot modification of shaking table TVC algorithm [J]. Journal of Vibration and Shock, 2010, 29(10): 211 − 215. (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.10.044
|
[14] |
李小军, 李芳芳, 纪金豹, 等. 基于加加速度的地震模拟振动台控制技术[J]. 工程科学与技术, 2018, 50(3): 64 − 72.
LI Xiaojun, LI Fangfang, JI Jinbao, et al. A new control technology of shaking table based on the jerk [J]. Advanced Engineering Sciences, 2018, 50(3): 64 − 72. (in Chinese)
|
[15] |
PAN P, GUO Y M, WANG T. Experimental study of a new kind of double-layer shaking table [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(11): 2897 − 2914.
|
[16] |
许国山, 徐景锋, 吴斌, 等. 位移-加速度振动台迭代学习控制方法试验研究[J]. 振动工程学报, 2017, 30(1): 100 − 109. doi: 10.16385/j.cnki.issn.1004-4523.2017.01.014
XU Guoshan, XU Jingfeng, WU Bin, et al. Experimental validation on displacement-acceleration iterative learning control for shaking table [J]. Journal of Vibration Engineering, 2017, 30(1): 100 − 109. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2017.01.014
|
[17] |
唐贞云, 李振宝, 周大兴, 等. 试件特性对地震模拟振动台控制性能影响研究(II)——对地震记录再现精度的影响及实时补偿[J]. 北京工业大学学报, 2010, 36(9): 1199 − 1205.
TANG Zhenyun, LI Zhenbao, ZHOU Daxing, et al. The effects on the earthquake simulation caused by the characteristics of the specimen in the shaking table tests-part (2): The effects on the replaying precision of the recorded seismic waves and the real-time compensation [J]. Journal of Beijing University of Technology, 2010, 36(9): 1199 − 1205. (in Chinese)
|
[18] |
DERTIMANIS V K, MOUZAKIS H P, PSYCHARIS I N. On the acceleration-based adaptive inverse control of shaking tables [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(9): 1329 − 1350.
|
[19] |
YANG T Y, LI K, LIN J Y, et al. Development of high-performance shake tables using the hierarchical control strategy and nonlinear control techniques [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(11): 1717 − 1728.
|
[20] |
RAJABI N, ABOLMASOUMI A H, SOLEYMANI M. Sliding mode trajectory tracking control of a ball-screw-driven shake table based on online state estimations using EKF/UKF [J]. Structural Control and Health Monitoring, 2018, 25(4): e2133. doi: 10.1002/stc.2133
|
[21] |
魏巍, 刘兴宝, 孔金星, 等. 电液伺服振动台的流量非线性补偿控制[J]. 华南理工大学学报(自然科学版), 2018, 46(9): 24 − 29, 72.
WEI Wei, LIU Xingbao, KONG Jinxing, et al. Flow nonlinear compensation control for electro-hydraulic servo shaking table [J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(9): 24 − 29, 72. (in Chinese)
|
[22] |
PHILLIPS B M, WIERSCHEM N E, SPENCER JR B F. Model-based multi-metric control of uniaxial shake tables [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(5): 681 − 699.
|
[23] |
NAKATA N. Acceleration trajectory tracking control for earthquake simulators [J]. Engineering Structures, 2010, 32(8): 2229 − 2236. doi: 10.1016/j.engstruct.2010.03.025
|
[24] |
RYU K P, REINHORN A M. Real-time control of shake tables for nonlinear hysteretic systems [J]. Structural Control and Health Monitoring, 2017, 24(2): e1871. doi: 10.1002/stc.1871
|
[25] |
YAO J J, HU S H, FU W, et al. Harmonic cancellation for electro-hydraulic servo shaking table based on LMS adaptive algorithm [J]. Journal of Vibration and Control, 2011, 17(12): 1862 − 1868. doi: 10.1177/1077546310363014
|
[26] |
田磐, 陈章位. 试件弹塑性阶段的地震模拟台控制方法研究[J]. 振动与冲击, 2014, 33(18): 43 − 49. doi: 10.13465/j.cnki.jvs.2014.18.008
TIAN Pan, CHEN Zhangwei. Earthquake simulation control of a specimen in elastoplastic stage [J]. Journal of Vibration and Shock, 2014, 33(18): 43 − 49. (in Chinese) doi: 10.13465/j.cnki.jvs.2014.18.008
|
[27] |
田英鹏, 徐丹, 周惠蒙, 等. 对风力发电机塔架施工阶段TMD阻尼器的研究[J]. 工程力学, 2019, 36(增刊 1): 184 − 188. doi: 10.6052/j.issn.1000-4750.2018.06.S037
TIAN Yingpeng, XU Dan, ZHOU Huimeng, et al. Study on the TMD damping of wind turbine towers in construction [J]. Engineering Mechanics, 2019, 36(Suppl 1): 184 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.S037
|
1. |
卢镜宇,杨静宁,张亚民,韦子丰. NiTi形状记忆合金箱型梁非对称弯曲相变分析. 江西科学. 2023(04): 751-754 .
![]() | |
2. |
王红艳,隽文烁. 基于二维流场的方形断面钝体气动性能分析. 齐齐哈尔大学学报(自然科学版). 2023(06): 1-4+10 .
![]() |