Citation: | WU Fang-wen, FENG Yan-peng, WANG Guang-qian, ZUO Jian, ZHANG Jing-feng. EXPERIMENTAL STUDY ON SHEAR PERFORMANCE OF STEEL-CONCRETE COMPOSITE BEAMS AFTER EXPERIENCING HIGH TEMPERATURES[J]. Engineering Mechanics, 2023, 40(9): 48-60. doi: 10.6052/j.issn.1000-4750.2022.01.0018 |
[1] |
聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110 − 122. doi: 10.15951/j.tmgcxb.2012.06.003
NIE Jianguo, TAO Muxuan, WU Lili, et al. Advances of research on steel-concrete composite bridges [J]. China Civil Engineering Journal, 2012, 45(6): 110 − 122. (in Chinese) doi: 10.15951/j.tmgcxb.2012.06.003
|
[2] |
刘永健, 高诣民, 周绪红, 等. 中小跨径钢-混凝土组合梁桥技术经济性分析[J]. 中国公路学报, 2017, 30(3): 1 − 13. doi: 10.3969/j.issn.1001-7372.2017.03.001
LIU Yongjian, GAO Yimin, ZHOU Xuhong, et al. Technical and economic analysis in steel-concrete composite girder bridges with small and medium span [J]. China Journal of Highway and Transport, 2017, 30(3): 1 − 13. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.001
|
[3] |
UY B. Applications, behaviour and design of composite steel-concrete structures [J]. Advances in Structural Engineering, 2012, 15(9): 1559 − 1571.
|
[4] |
王勇, 王功臣, 王本淼, 等. 火灾后混凝土连续板剩余承载力试验研究及理论分析[J]. 工程力学, 2022, 39(2): 96 − 109. doi: 10.6052/j.issn.1000-4750.2020.12.0914
WANG Yong, WANG Gongchen, WANG Benmiao, et al. Experimental study and theoretical analysis on the residual capacities of fire-damaged concrete continuous slabs [J]. Engineering Mechanics, 2022, 39(2): 96 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0914
|
[5] |
陈俊, 张白, 杨鸥, 等. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92 − 100. doi: 10.6052/j.issn.1000-4750.2017.06.0491
CHEN Jun, ZHANG Bai, YANG Ou, et al. Bond performance between slightly corroded steel bars and concrete after exposed to high temperatures [J]. Engineering Mechanics, 2018, 35(10): 92 − 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0491
|
[6] |
王卫永, 李国强. 钢-混凝土组合梁抗火性能研究综述[J]. 建筑钢结构进展, 2014, 16(5): 1 − 8, 28. doi: 10.3969/j.issn.1671-9379.2014.05.001
WANG Weiyong, LI Guoqiang. A state-of-the-art review on fire resistance of steel-concrete composite beams [J]. Progress in Steel Building Structures, 2014, 16(5): 1 − 8, 28. (in Chinese) doi: 10.3969/j.issn.1671-9379.2014.05.001
|
[7] |
金浏, 张仁波, 杜修力, 等. 温度对混凝土结构力学性能影响的研究进展[J]. 土木工程学报, 2021, 54(3): 1 − 18. doi: 10.15951/j.tmgcxb.2021.03.001
JIN Liu, ZHANG Renbo, DU Xiuli, et al. Research progress on the influence of temperature on the mechanical performance of concrete structures [J]. China Civil Engineering Journal, 2021, 54(3): 1 − 18. (in Chinese) doi: 10.15951/j.tmgcxb.2021.03.001
|
[8] |
BABALOLA O E, AWOYERA P O, LE D H, et al. A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite [J]. Construction and Building Materials, 2021, 296(4): 123448.
|
[9] |
王卫永, 张艳红, 李国强. 高强结构钢高温下和高温后力学性能指标的标准值研究[J/OL]. 建筑结构学报. DOI: 10.14006/j.jzjgxb.2020.0680.
WANG Weiyong, ZHANG Yanhong, LI Guoqiang. Study on nominal values of mechanical properties of high strength structural steel at elevated temperature and after fire exposure [J/OL]. Journal of Building Structures. DOI:10.14006/j.jzjgxb.2020.0680. (in Chinese)
|
[10] |
毛小勇, 肖岩. 标准升温下轻钢-混凝土组合梁的抗火性能研究[J]. 湖南大学学报(自然科学版), 2005(2): 64 − 70.
MAO Xiaoyong, XIAO Yan. Behavior of lightweight steel-concrete composite beams subjected to standard fire [J]. Journal of Hunan University (Natural Sciences), 2005(2): 64 − 70. (in Chinese)
|
[11] |
姚伟发, 黄侨, 张娟秀. 钢-混组合梁的火灾试验及剩余承载力[J]. 东南大学学报(自然科学版), 2016, 46(2): 347 − 352. doi: 10.3969/j.issn.1001-0505.2016.02.019
YAO Weifa, HUANG Qiao, ZHANG Juanxiu. Fire experiment and residual strength of steel-concrete composite girders [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(2): 347 − 352. (in Chinese) doi: 10.3969/j.issn.1001-0505.2016.02.019
|
[12] |
蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463 − 1470. doi: 10.3785/j.issn.1008-973X.2016.08.006
JIANG Xiang, TONG Genshu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams [J]. Journal of Zhejiang University (Engineering Science), 2016, 50(8): 1463 − 1470. (in Chinese) doi: 10.3785/j.issn.1008-973X.2016.08.006
|
[13] |
AZIZ E M, KODUR V K, GLASSMAN J D, et al. Behavior of steel bridge girders under fire conditions [J]. Journal of Constructional Steel Research, 2015, 106: 11 − 22. doi: 10.1016/j.jcsr.2014.12.001
|
[14] |
NASER M Z, KODUR V. Comparative fire behavior of composite girders under flexural and shear loading [J]. Thin-Walled Structures, 2017, 116: 82 − 90. doi: 10.1016/j.tws.2017.03.003
|
[15] |
DING R, FAN S, WU M, et al. Numerical study on fire resistance of rectangular section stainless steel-concrete composite beam [J]. Fire Safety Journal, 2021, 125: 103436. doi: 10.1016/j.firesaf.2021.103436
|
[16] |
聂建国, 唐亮. 密实截面组合梁的竖向抗剪强度Ⅰ: 受正弯矩作用的组合梁[J]. 土木工程学报, 2008(3): 7 − 14. doi: 10.3321/j.issn:1000-131X.2008.03.002
NIE Jianguo, TANG Liang. Vertical shear strength of composite beams with compact steel sections. Part Ⅰ: Composite beams subjected to sagging moment [J]. China Civil Engineering Journal, 2008(3): 7 − 14. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.03.002
|
[17] |
贾连光, 杜明坎, 回锋, 等. 六边形孔蜂窝梁和蜂窝组合梁抗剪性能分析[J]. 工程力学, 2016, 33(1): 81 − 87, 132. doi: 10.6052/j.issn.1000-4750.2014.06.0520
JIA Lianguang, DU Mingkan, HUI Feng, et al. Analysis of shear behavior of hexagon hole cellular beam and cellular composite beam [J]. Engineering Mechanics, 2016, 33(1): 81 − 87, 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.06.0520
|
[18] |
丁发兴, 王恩, 吕飞, 等. 考虑组合作用的钢-混凝土组合梁抗剪承载力[J]. 工程力学, 2021, 38(7): 86 − 98. doi: 10.6052/j.issn.1000-4750.2020.07.0479
DING Faxing, WANG En, LYU Fei, et al. Composite action of of steel-concrete composite beams under lateral shear force [J]. Engineering Mechanics, 2021, 38(7): 86 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0479
|
[19] |
GB/T 50081−2019, 普通混凝土力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.
GB/T 50081−2019, Standard for test method of concrete physical and mechanical properties [S]. Beijing: China Architecture Industry Press, 2019. (in Chinese)
|
[20] |
GB/T 228.1−2010, 金属材料 拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.
GB/T 228.1−2010, Metallic materials: tensile testing: part 1: Method of test at room temperature [S]. Beijing: Standards Press of China , 2010. (in Chinese)
|
[21] |
CECS 252−2009, 火灾后建筑结构鉴定标准[S]. 北京: 中国计划出版社, 2009.
CECS 252−2009, Standard for building structural assessment after fire [S]. Beijing: China Planning Press, 2009. (in Chinese)
|
[22] |
陈丽红, 孟宏睿, 林友军. 高温作用后混凝土性能试验研究[J]. 新型建筑材料, 2006(9): 12 − 14. doi: 10.3969/j.issn.1001-702X.2006.09.005
CHEN Lihong, MENG Hongrui, LIN Youjun. Experimental study on properties of concrete after high temperature [J]. New Building Materials, 2006(9): 12 − 14. (in Chinese) doi: 10.3969/j.issn.1001-702X.2006.09.005
|
[23] |
徐彧, 徐志胜, 朱玛. 高温作用后混凝土强度与变形试验研究[J]. 长沙铁道学院学报, 2000(2): 13 − 16, 21.
XU Yu, XU Zhisheng, ZHU Ma. Experiment investigation of strength and reformation of concrete after high temperature [J]. Journal of Changsha Railway University, 2000(2): 13 − 16, 21. (in Chinese)
|
[24] |
张白, 陈俊, 杨鸥, 等. 高温后混凝土质量损失及抗压强度退化规律试验研究[J]. 建筑结构, 2019, 49(4): 76 − 81. doi: 10.19701/j.jzjg.2019.04.015
ZHANG Bai, CHEN Jun, YANG Ou, et al. Experimental study on mass loss and compressive strength degradation law of concrete after high temperature exposure [J]. Building Structure, 2019, 49(4): 76 − 81. (in Chinese) doi: 10.19701/j.jzjg.2019.04.015
|
[25] |
ERGÜN A, KÜRKLÜ G, BAŞPINAR M S. The effects of material properties on bond strength between reinforcing bar and concrete exposed to high temperature [J]. Construction and Building Materials, 2016, 112: 691 − 698. doi: 10.1016/j.conbuildmat.2016.02.213
|
[26] |
孟宏睿. 高温作用后混凝土力学性能及无损检测的试验研究[D]. 西安: 西安建筑科技大学, 2005.
MENG Hongrui. The research of the mechanical performance and inspection technology in no damaging method of fired concrete [D]. Xi’an: Xi’an University of Architecture and Technology, 2005. (in Chinese)
|
[27] |
LU J, LIU H, CHEN Z, et al. Experimental investigation into the post-fire mechanical properties of hot-rolled and cold-formed steels [J]. Journal of Constructional Steel Research, 2016, 121: 291 − 310.
|
[28] |
陈建锋, 曹平周. 高温后结构钢力学性能试验[J]. 解放军理工大学学报(自然科学版), 2010, 11(3): 328 − 333.
CHEN Jianfeng, CAO Pingzhou. Experimental investigation into mechanical properties of steel post high temperatures [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(3): 328 − 333. (in Chinese)
|
[29] |
荣成骁. 结构钢材高温过火后性能研究[D]. 北京: 清华大学, 2018.
RONG Chengxiao. Post-fire performance of structural steels [D]. Beijing: Tsinghua University, 2018. (in Chinese)
|
[30] |
ZHANG C, WANG R, ZHU L. Mechanical properties of Q345 structural steel after artificial cooling from elevated temperatures [J]. Journal of Constructional Steel Research, 2021, 176(12): 106432.
|
[31] |
ZHANG C, JIA B, WANG J. Influence of artificial cooling methods on post-fire mechanical properties of Q355 structural steel [J]. Construction and Building Materials, 2020, 252(12): 119092.
|
[32] |
GB 50017−2017, 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.
GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture and Building Press, 2017. (in Chinese)
|
[33] |
BS EN 1994-1-1: 2004, Eurocode 4: Design of composite steel and concrete structures [S]. London: British Standards Institute, 2004.
|
[34] |
AS/NZS 2327: 2017, Composite structures-composite steel-concrete construction in buildings [S]. Sydney: Standars Australia, 2017.
|