Citation: | ZHAN Qing-liang, BAI Chun-jin, GE Yao-jun. REPRESENTATION AND RECONSTRUCTION OF FLOW AROUND BRIDGE DECK USING TIME HISTORY DEEP LEARNING[J]. Engineering Mechanics, 2023, 40(9): 13-19. doi: 10.6052/j.issn.1000-4750.2021.12.0005 |
[1] |
葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011(增刊 2): 11 − 23.
GE Yaojun. Technical challenges and refinement research on wind resistance of long-span bridges [J]. Engineering Mechanics, 2011(Suppl 2): 11 − 23. (in Chinese)
|
[2] |
李永乐, 陈星宇, 汪斌, 等. 扁平箱梁涡激共振阻塞效应及振幅修正[J]. 工程力学, 2018, 35(11): 45 − 52. doi: 10.6052/j.issn.1000-4750.2017.07.0576
LI Yongle, CHEN Xingyu, WANG Bin, et al. Blockage-Effects and amplitude conversion of vortex- induced vibration for flat-box girder [J]. Engineering Mechanics, 2018, 35(11): 45 − 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0576
|
[3] |
刘剑寒, 马文勇. 旋转圆柱气动力特性风洞试验研究[J]. 工程力学, 2021, 38(增刊): 89 − 92. doi: 10.6052/j.issn.1000-4750.2020.05.S016
LIU Jianhan, MA Wenyong. Wind tunnel test on aerodynamic characteristics of a rotating cylinder [J]. Engineering Mechanics, 2021, 38(Suppl): 89 − 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S016
|
[4] |
刘庆宽, 孙一飞, 张磊杰, 等. 凹痕对斜拉桥斜拉索气动性能影响研究[J]. 工程力学, 2019, 36(增刊): 272 − 277. doi: 10.6052/j.issn.1000-4750.2018.05.S053
LIU Qingkuan, SUN Yifei, ZHANG Leijie, et al. Study on the influence of dent on aerodynamic performance of stay cables of cable-stayed bridge [J]. Engineering Mechanics, 2019, 36(Suppl): 272 − 277. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S053
|
[5] |
金晓威, 赖马树金, 李惠. 物理增强的流场深度学习建模与模拟方法[J]. 力学学报, 2021, 53(10): 2616 − 2629. doi: 10.6052/0459-1879-21-373
JIN Xiaowei, LAIMA Shujin, LI Hui. Physics-enhanced deep learning methods for modelling and simulating flow fields [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2616 − 2629. (in Chinese) doi: 10.6052/0459-1879-21-373
|
[6] |
KUTZ J N. Deep learning in fluid dynamics [J]. Journal of Fluid Mechanics, 2017, 814: 1 − 4. doi: 10.1017/jfm.2016.803
|
[7] |
MURATA T, FUKAMI K, FUKAGATA K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics [J]. Journal of Fluid Mechanics, 2019, 882: 1 − 15. doi: 10.1017/jfm.2019.822
|
[8] |
FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data [J]. Physics of Fluids, 2020, 32(9): 095110. doi: 10.1063/5.0020721
|
[9] |
RAISSI M, KARNIADAKIS G E. Hidden physics models: Machine learning of nonlinear partial differential equations [J]. Journal of Computational Physics, 2018, 357: 125 − 141. doi: 10.1016/j.jcp.2017.11.039
|
[10] |
RAISSI M, WANG Z, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations [J]. Journal of Fluid Mechanics, 2019, 861: 119 − 137. doi: 10.1017/jfm.2018.872
|
[11] |
MAULIK R, SAN O. A neural network approach for the blind deconvolution of turbulent flows [J]. Journal of Fluid Mechanics, 2017, 831: 151 − 181. doi: 10.1017/jfm.2017.637
|
[12] |
FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning [J]. Journal of Fluid Mechanics, 2019, 870: 106 − 120. doi: 10.1017/jfm.2019.238
|
[13] |
LIU B, TANG J, HUANG H, et al. Deep learning methods for super-resolution reconstruction of turbulent flows [J]. Physics of Fluids, 2020, 32(2): 025105. doi: 10.1063/1.5140772
|
[14] |
KIM H, KIM J, WON S, et al. Unsupervised deep learning for super-resolution reconstruction of turbulence [J]. Journal of Fluid Mechanics, 2021, 910: 1 − 14. doi: 10.1017/jfm.2020.1028
|
[15] |
叶舒然, 张珍, 宋旭东, 等. 自动编码器在流场降阶中的应用[J]. 空气动力学学报, 2019, 37(3): 498 − 504.
YE Shuran, ZHANG Zhen, SONG Xudong, et al. Applications of autoencoder in reducedGorder modeling of flow field [J]. Acta Aerodynamica Sinica, 2019, 37(3): 498 − 504. (in Chinese)
|
[16] |
惠心雨, 袁泽龙, 白俊强, 等. 基于深度学习的非定常周期性流动预测方法[J]. 空气动力学学报, 2019, 37(3): 462 − 469.
HUI Xinyu, YUAN Zelong, BAI Junqiang, et al. A method of unsteady periodic flow field prediction based on the deep learning [J]. Acta Aerodynamica Sinica, 2019, 37(3): 462 − 469. (in Chinese)
|
[17] |
战庆亮, 葛耀君, 白春锦. 基于尾流时程目标识别的流场参数选择研究[J]. 力学学报, 2021, 10(53): 2692 − 2702.
ZHAN Qingliang, GE Yaojun, BAI Chunjin. Study on flow field parameters of wake time history target recognition [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 10(53): 2692 − 2702. (in Chinese)
|
[18] |
战庆亮, 白春锦, 张宁, 等. 基于时程卷积自编码的机翼绕流特征识别方法[J]. 航空学报, 2022, 43(11): 126531. doi: 10.7527/S1000-6893.2021.26531
ZHAN Qingliang, BAI Chunjin, ZHANG Ning, et al. Feature extraction method of flow around wing based on time history convolutional autoencoder [J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(11): 126531. (in Chinese) doi: 10.7527/S1000-6893.2021.26531
|
[19] |
战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12): 75 − 79.
ZHAN Qingliang, ZHOU Zhiyong, GE Yaojun. 3-Dimensional large eddy simulation of circular cylinder at Re=3900 [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 75 − 79. (in Chinese)
|
[20] |
战庆亮, 葛耀君, 白春锦. 流场特征识别的无量纲时程深度学习方法[J]. 工程力学, 2023, 40(2): 17 − 24. doi: 10.6052/j.issn.1000-4750.2021.08.0638
Zhan Qingliang, Ge Yaojun, Bai Chunjin. Deep learning method for flow field feature recognition based on dimensionless time history [J]. Engineering Mechanics, 2023, 40(2): 17 − 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0638
|
[21] |
战庆亮, 白春锦, 葛耀君. 基于时程深度学习的流场特征分析方法[J]. 力学学报, 2022, 54(3): 822 − 828.
ZHAN Qingliang, BAI Chunjin, GE Yaojun. Fluid feature analysis based on time history deep learning [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 822 − 828. (in Chinese)
|