LIU Ye, REN Ye-fei, WANG Da-ren, WANG Hong-wei, JI Kun, WEN Rui-zhi, ZHOU Bao-feng. EVALUATING THE SCHEMES OF ENGINEERING SITE CLASSIFICATION BASED ON RESIDUAL ANALYSIS OF GROUND MOTION PREDICTION[J]. Engineering Mechanics, 2023, 40(6): 99-109. DOI: 10.6052/j.issn.1000-4750.2021.11.0880
Citation: LIU Ye, REN Ye-fei, WANG Da-ren, WANG Hong-wei, JI Kun, WEN Rui-zhi, ZHOU Bao-feng. EVALUATING THE SCHEMES OF ENGINEERING SITE CLASSIFICATION BASED ON RESIDUAL ANALYSIS OF GROUND MOTION PREDICTION[J]. Engineering Mechanics, 2023, 40(6): 99-109. DOI: 10.6052/j.issn.1000-4750.2021.11.0880

EVALUATING THE SCHEMES OF ENGINEERING SITE CLASSIFICATION BASED ON RESIDUAL ANALYSIS OF GROUND MOTION PREDICTION

More Information
  • Received Date: November 10, 2021
  • Revised Date: March 02, 2022
  • Accepted Date: March 14, 2022
  • Available Online: March 14, 2022
  • Different parameters are used for stipulating site classes in seismic design codes of different countries of the world, among which the schemes from China, Japan and U.S.A are the most representative. Few studies have been examined and evaluated whether the site classification scheme can functionally reflect the intra-class uniformity and inter-class separateness of ground motion site response. To examine the performance of site classification schemes, the strong motion records and borehole data from KiK-net seismograph networks are used, the sites of strong motion station are classified respectively according to the schemes from the three countries, and the site amplification factors are calculated based on the method of residual analysis of ground motion model. The mean and standard deviation of site amplification factors for each site class are compared among different classification schemes. The results show that: For PGA and short period (T < 0.1 s) ground motion, the scheme from seismic code of Japan which uses site nature period (TS), does not reflect clearly the inter-class separateness; while the schemes of China and U.S.A. have better performance, because soil covering depth and equivalent shear wave velocity (VSE) are used in China and VS30 is used in U.S.A. In general, the scheme from seismic code of Japan is the best one in reflecting intra-class uniformity; but for long period (T > 2 s) ground motion, the one from China performs best. Great variability of site amplification of medium-long period ground motions is observed for site class III defined by seismic code of China, calling for a further investigation on the rationality of its site classification scheme. The results achieved can provide theoretical support for improving site classification scheme in future.
  • [1]
    唐川, 陈龙伟. 场地校正的地表PGA放大系数概率模型研究[J]. 工程力学, 2020, 37(12): 99 − 113. doi: 10.6052/j.issn.1000-4750.2020.01.0023

    TANG Chuan, CHEN Longwei. Probability modelling of PGA amplification factors corrected by site conditions [J]. Engineering Mechanics, 2020, 37(12): 99 − 113. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0023
    [2]
    胡进军, 赵泽锋, 谢礼立. 考虑场地类别和断层距的地震动及结构响应参数相关性分析[J]. 地震工程与工程振动, 2020, 40(2): 13 − 22.

    HU Jinjun, ZHAO Zefeng, XIE Lili. Correlation analysis of ground motion parameters and structural response parameters considering the site condition and fault distance [J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(2): 13 − 22. (in Chinese)
    [3]
    胡进军, 刘巴黎, 谢礼立. 基于因子分析的地震动特征提取及潜在破坏势评估[J]. 工程力学, 2022, 39(10): 140 − 151, 172. doi: 10.6052/j.issn.1000-4750.2021.06.0436

    HU Jinjun, LIU Bali, XIE Lili. Factor analysis-based ground motion feature extraction and the measurement of the potential structural damage [J]. Engineering Mechanics, 2022, 39(10): 140 − 151, 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0436
    [4]
    李宁, 刁泽民, 李忠献. 考虑震源和场地特征的近断层地区竖向地震动合成研究[J]. 工程力学, 2022, 39(6): 181 − 190. doi: 10.6052/j.issn.1000-4750.2021.03.0232

    LI Ning, DIAO Zemin, LI Zhongxian. Study on synthesis method of vertical ground motions for near-fault regions considering the characteristics of source and site condition [J]. Engineering Mechanics, 2022, 39(6): 181 − 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0232
    [5]
    任叶飞, 尹建华, 温瑞智, 等. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115 − 125. doi: 10.6052/j.issn.1000-4750.2019.01.0042

    REN Yefei, YIN Jianhua, WEN Ruizhi, et al. The impact of ground motion inputs on the uncertainty of structural collapse fragility [J]. Engineering Mechanics, 2020, 37(1): 115 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0042
    [6]
    项梦洁, 陈隽. 考虑场地效应的建筑群动力可靠度PDEM评估[J]. 工程力学, 2021, 38(8): 85 − 96. doi: 10.6052/j.issn.1000-4750.2020.08.0549

    XIANG Mengjie, CHEN Jun. Dynamic reliability evaluation of building cluster considering site effect based on PDEM [J]. Engineering Mechanics, 2021, 38(8): 85 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0549
    [7]
    NEHRP-2015, National Earthquake Hazards Reduction Program: Recommended provisions for seismic regulations for new buildings and other structures (2015 Edition) [S]. Washington D C: Building Seismic Safety Council: 14, 2015.
    [8]
    JRA-1980, Japan Road Association: Specifications for highway bridges, Part V, Seismic design [S]. Tokyo: Maruzen Co., LTD, 1980.
    [9]
    GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [10]
    CASTELLARO S, MULARGIA F, ROSSI P. VS30: Proxy for seismic amplification? [J]. Seismological Research Letters, 2008, 79(4): 540 − 543. doi: 10.1785/gssrl.79.4.540
    [11]
    ZHAO J X, XU H. A Comparison of VS30 and site period as site-effect parameters in response spectral ground-motion prediction equations [J]. Bulletin of the Seismological Society of America, 2013, 103(1): 1 − 18. doi: 10.1785/0120110251
    [12]
    ZHU C, PILZ M, COTTON F. Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity? [J]. Bulletin of Earthquake Engineering, 2020, 18: 797 − 820. doi: 10.1007/s10518-019-00738-6
    [13]
    ABRAHAMSON N A, SILVA W J. Summary of the Abrahamson &Silva NGA ground-motion relations [J]. Earthquake Spectra, 2008, 24(1): 67 − 97. doi: 10.1193/1.2924360
    [14]
    BOORE D M, ATKINSON G M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5% damped PSA at spectral periods between 0.01 s and 10.0 s [J]. Earthquake Spectra, 2008, 24(1): 99 − 138. doi: 10.1193/1.2830434
    [15]
    CASTELLARO S. The VFZ matrix: Simplified seismic soil classification from a different perspective [C]// Fourth IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion. Santa Barbara: University of California Santa Barbara, 2011: 23 − 26.
    [16]
    MUCCIARELLI M, GALLIPOLI M R. Comparison between VS30 and other estimates of site amplification in Italy [C]// First European Conference on Earthquake Engineering and Seismology, A Joint Event of the 13th European Conference on Earthquake Engineering and 30th General Assembly of the European Seismological Commission. Geneva: Swiss Society for Earthquake Engineering and Structural Dynamics (SGEB), 2006: 3 − 8 .
    [17]
    WALD L A, MORI J. Evaluation of methods for estimating linear site response amplifications in the Los Angeles region [J]. Bulletin of the Seismological Society of America, 2000, 90(6): 32 − 42. doi: 10.1785/0119970170
    [18]
    VERDUGO R. Seismic site classification [J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 317 − 329. doi: 10.1016/j.soildyn.2018.04.045
    [19]
    VERDUGO R, OCHOA-CORNEJO F, GONZALEZ J, et al. Site effect and site classification in areas with large earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105071. doi: 10.1016/j.soildyn.2018.02.002
    [20]
    ZHAO J X. Attenuation relations of strong ground motion in Japan using site classification based on predominant period [J]. Bulletin of the Seismological Society of America, 2006, 96(3): 898 − 913. doi: 10.1785/0120050122
    [21]
    齐文浩, 薄景山, 阮璠, 等. 中国场地分类方法的一种改进方案[J]. 自然灾害学报, 2015, 24(1): 234 − 238.

    QI Wenhao, BO Jingshan, RUAN Fan, et al. Improvement on current site classification in China [J]. Journal of Natural Disasters, 2015, 24(1): 234 − 238. (in Chinese)
    [22]
    陈国兴, 丁杰发, 方怡, 等. 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3509 − 3522, 3582.

    CHEN Guoxing, DING Jiefa, FANG Yi, et al. Investigation of seismic site classification formulation [J]. Rock and Soil Mechanics, 2020, 41(11): 3509 − 3522, 3582. (in Chinese)
    [23]
    薄景山, 李琪, 孙强强, 等. 场地分类研究现状及有关问题的讨论[J]. 自然灾害学报, 2021, 30(3): 1 − 13.

    BO Jingshan, LI Qi, SUN Qiangqiang, et al. Site classification research status and discussion of related issues [J]. Journal of Natural Disasters, 2021, 30(3): 1 − 13. (in Chinese)
    [24]
    周健, 李小军, 李亚琦, 等. 中美建筑抗震设计规范中工程场地类别的对比和换算关系[J]. 地震学报, 2021, 43(4): 521 − 532, 534.

    ZHOU Jian, LI Xiaojun, LI Yaqi, et al. Comparative analysis and transformation relations between China and US site classification systems in building seismic code provisions [J]. Acta Seismologica Sinica, 2021, 43(4): 521 − 532, 534. (in Chinese)
    [25]
    FROHLICH C. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms [J]. Physics of the Earth and Planetary Interiors, 1992, 75(1/2/3): 193 − 198. doi: 10.1016/0031-9201(92)90130-N
    [26]
    ZHAO J X, ZHOU S L, GAO P J, et al. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations [J]. Bulletin of the Seismological Society of America, 2015, 105(5): 2750 − 2763. doi: 10.1785/0120150013
    [27]
    HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, A comprehensive subduction zone geometry model [J]. Science, 2018, 362(6410): 58 − 61.
    [28]
    ABRAHAMSON N A, YOUNGS R R. A stable algorithm for regression analysis using the random effect model [J]. Bulletin of the Seismological Society of America, 1992, 82(1): 505 − 510. doi: 10.1785/BSSA0820010505
    [29]
    ABRAHAMSON N A, SILVA W J, KAMAI R. Summary of the ASK14 ground motion relation for active crustal regions [J]. Earthquake Spectra, 2014, 30(3): 913 − 914.
    [30]
    BOORE D M, STEWART J P, SEYHAN E, et al. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes [J]. Earthquake Spectra, 2013, 30(3): 1057 − 1085.
    [31]
    REN Y, WANG H, XU P, et al. Strong-motion observations of the 2017 Ms7.0 Jiuzhaigou earthquake: Comparison with the 2013 Ms7.0 Lushan earthquake [J]. Seismological Research Letters, 2018, 89(4): 1354 − 1365. doi: 10.1785/0220170238
    [32]
    WANG H W, LI C G, WEN R Z, et al. Integrating effects of source-dependent factors on sediment-depth scaling of additional site amplification to ground-motion prediction equation [J]. Bulletin of the Seismological Society of America, 2021, 112(1): 400 − 418.
  • Related Articles

    [1]QIU Xiang, YUAN Xiao-ming, ZHANG Yu-yang, YUAN Jin-yuan. RESEARCH ON THE DIFFERENCES OF CPT-BASED LIQUEFACTION DISCRIMINANT FORMULAS UNDER INTERNATIONAL GENERAL FRAMEWORK[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.09.0689
    [2]GUO Yong, YU Ding-hao, LI Gang. EFFICIENT SEISMIC DAMAGE ANALYSIS METHOD OF STRUCTURES UPON THE INELASTICITY-SEPARATED THEORY[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.01.0039
    [3]ZHANG Jia-wen, LI Ming-chao, HAN Shuai, YAN Wen-yu. INPUT METHOD OF SEISMIC WAVE IN IRREGULAR TERRAIN BASED ON WAVE FIELD SEPARATION[J]. Engineering Mechanics, 2023, 40(11): 69-80, 109. DOI: 10.6052/j.issn.1000-4750.2022.02.0138
    [4]LI Jia-long, LI Gang, LI Hong-nan. THE INELASTICITY-SEPARATED SOLID ELEMENT MODEL AND COMPUTATIONAL EFFICIENCY ANALYSIS[J]. Engineering Mechanics, 2019, 36(9): 40-49,59. DOI: 10.6052/j.issn.1000-4750.2018.07.0383
    [5]WU Qiao-yun, WANG Tao, WEI Min, ZHU Hong-ping. Study on the critical separation distance of adjacent structures based on seismic pounding fragility[J]. Engineering Mechanics, 2019, 36(7): 89-98. DOI: 10.6052/j.issn.1000-4750.2018.08.0464
    [6]JIA Hong-yu, DU Xiu-li, LI Lan-ping, HUANG Sheng-qian, ZHENG Shi-xiong. PROBABILITY ANALYSIS OF POUNDING SEPARATION DISTANCE OF BRIDGES SUBJECTED TO EARTHQUAKE EXCITATIONS[J]. Engineering Mechanics, 2018, 35(8): 39-45. DOI: 10.6052/j.issn.1000-4750.2017.03.0263
    [7]SUN Hu-yue, YE Ji-hong. 3D CHARACTERISTICS OF SEPARATION BUBBLES AROUND FLAT ROOFS BY PIV TECHNIQUE[J]. Engineering Mechanics, 2016, 33(11): 121-131. DOI: 10.6052/j.issn.1000-4750.2015.03.0245
    [8]GUO Yan-lin, ZHANG Bo-hao, JIANG Zi-qin, ZHAO Si-yuan. ELASTIC BUCKLING ANALYSIS OF CORE-SEPARATED BUCKLING-RESTRAINED BRACES BY RITZ METHOD[J]. Engineering Mechanics, 2015, 32(1): 26-35. DOI: 10.6052/j.issn.1000-4750.2014.01.0086
    [9]CAO Hui. ANALYSIS OF NON-LINEAR VIBRATION OF RC BEAMS BY USING BLIND SOURCE SEPARATION[J]. Engineering Mechanics, 2012, 29(12): 121-126. DOI: 10.6052/j.issn.1000-4750.2011.02.0084
    [10]HOU Fen, XU Min, CHEN Zhi-min. FLOW SEPARATION CONTROL ON MORPHING WING[J]. Engineering Mechanics, 2009, 26(5): 228-233,.
  • Cited by

    Periodical cited type(5)

    1. 姚鑫鑫,任叶飞,岸田忠大,温瑞智,王宏伟,冀昆. 满足数据同一性的强震动记录去噪滤波后处理输出方法. 工程力学. 2025(01): 152-163 . 本站查看
    2. 李小军,程晓芳,荣棉水,张斌. 基于强震动记录统计分析的不同场地分类方法比较. 岩土工程学报. 2025(04): 677-684 .
    3. 王哲,赵战锋. 残差分析在河南嵩县庙岭金矿模型验证中的应用研究. 矿产与地质. 2024(05): 949-958 .
    4. 任叶飞,刘也,张鹏,冀昆,王宏伟,温瑞智,谢俊举. 基于聚类分析的我国工程场地分类方案优化研究. 建筑结构学报. 2023(11): 226-235 .
    5. 李瑞山,吴进辉,陈龙伟,袁晓铭,李明睿. 软土场地地震动效应概率化模型. 岩土工程学报. 2023(S2): 189-194 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (361) PDF downloads (65) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return