YIN Jing-ke, LI Dian-qing, DU Wen-qi. CORRELATION ANALYSIS OF SLOPE DISPLACEMENT RESPONSE AND SEISMIC PARAMETERS DUE TO MAIN-AFTERSHOCK SEQUENCES[J]. Engineering Mechanics, 2023, 40(3): 44-53. DOI: 10.6052/j.issn.1000-4750.2021.08.0665
Citation: YIN Jing-ke, LI Dian-qing, DU Wen-qi. CORRELATION ANALYSIS OF SLOPE DISPLACEMENT RESPONSE AND SEISMIC PARAMETERS DUE TO MAIN-AFTERSHOCK SEQUENCES[J]. Engineering Mechanics, 2023, 40(3): 44-53. DOI: 10.6052/j.issn.1000-4750.2021.08.0665

CORRELATION ANALYSIS OF SLOPE DISPLACEMENT RESPONSE AND SEISMIC PARAMETERS DUE TO MAIN-AFTERSHOCK SEQUENCES

More Information
  • Received Date: August 25, 2021
  • Revised Date: March 27, 2022
  • Accepted Date: April 07, 2022
  • Available Online: April 07, 2022
  • Slopes are vulnerable during strong earthquakes, and earthquake-induced landslides have caused serious casualties and economic loss. At present, researchers mainly focused on the seismic slope displacements subjected to the mainshocks. However, the influence of aftershocks on slope stability is ignored. To address this issue, 210 recorded main-aftershock sequences are selected in this study, which are subsequently used as input ground motions for the numerical analysis of slopes. Based on the finite difference software FLAC, the slope displacements caused by the main-aftershock sequences are analyzed, and the incremental displacement ratio is used to quantify the influence of the aftershocks on the slope responses. Fifteen ground motion intensity measures (IMs) are further selected, and the correlations of the IMs of mainshocks, of aftershocks, of the main-aftershocks with mainshock-induced displacements, of aftershock-induced incremental displacements, and of the main-aftershock induced total displacements are studied, respectively. The results show that aftershocks can produce significant vertical permanent displacement increments, some of which are even greater than the mainshock-induced displacements. The IMs of the mainshocks exhibit the strongest correlations with the main-aftershock induced slope displacements. Among the ground motion IMs considered, the spectral acceleration at the slope's fundamental period and acceleration spectrum intensity of the mainshocks (Sa(Ts)M and ASIM, respectively) exhibit the strongest correlation with the main-aftershock induced displacement. Finally, predictive models for the main-aftershock displacements are proposed based on the two optimal IMs identified, and the performance of the models is satisfactory.
  • [1]
    黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730 − 741. doi: 10.3969/j.issn.1004-9665.2008.06.002

    HUANG Runqiu, PEI Xiangjun, LI Tianbin. Analysis of the basic characteristics and formation mechanism of the Daguangbao giant landslide triggered by the Wenchuan earthquake [J]. Journal of Engineering Geology, 2008, 16(6): 730 − 741. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.06.002
    [2]
    黄润秋, 李为乐. 汶川地震触发崩塌滑坡数量及其密度特征分析[J]. 地质灾害与环境保护, 2009, 20(3): 1 − 7. doi: 10.3969/j.issn.1006-4362.2009.03.001

    HUANG Runqiu, LI Weile. Analysis of the number and density characteristics of landslides triggered by the Wenchuan earthquake [J]. Geological Hazards and Environmental Protection, 2009, 20(3): 1 − 7. (in Chinese) doi: 10.3969/j.issn.1006-4362.2009.03.001
    [3]
    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008(4): 433 − 444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    YIN Yueping. Research on geological disasters of Wenchuan earthquake with magnitude of 8.0 [J]. Journal of Engineering Geology, 2008(4): 433 − 444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001
    [4]
    许冲, 徐锡伟, 于贵华. 玉树地震滑坡分布调查及其特征与形成机制[J]. 地震地质, 2012, 34(1): 47 − 62.

    XU Chong, XU Xiwei, YU Guihua. Distribution survey of Yushu earthquake landslide and its characteristics and formation mechanism [J]. Seismology and Geology, 2012, 34(1): 47 − 62. (in Chinese)
    [5]
    许冲, 徐锡伟, 郑文俊, 等. 2013年四川省芦山“4.20”7.0级强烈地震触发滑坡[J]. 地震地质, 2013, 35(3): 641 − 660. doi: 10.3969/j.issn.0253-4967.2013.03.018

    XU Chong, XU Xiwei, ZHENG Wenjun, et al. The landslidetriggered by the “4.20” earthquake with magnitude of 7.0 in Lushan, Sichuan Province in 2013 [J]. Seismology and Geology, 2013, 35(3): 641 − 660. (in Chinese) doi: 10.3969/j.issn.0253-4967.2013.03.018
    [6]
    殷志强, 陈红旗, 褚宏亮, 等. 2008年以来中国5次典型地震事件诱发地质灾害主控因素分析[J]. 地学前缘, 2013, 20(6): 289 − 302.

    YIN Zhiqiang, CHEN Hongqi, CHU Hongliang, et al. Analysis of the main controlling factors of geological disasters induced by five typical earthquake events in China since 2008 [J]. Earth Science Frontier, 2013, 20(6): 289 − 302. (in Chinese)
    [7]
    LENTI L, MARTINO S. A parametric numerical study of the interaction between seismic waves and landslides for the evaluation of the susceptibility to seismically induced displacements [J]. Bulletin of the Seismological Society of America, 2013, 103(1): 33 − 56. doi: 10.1785/0120120019
    [8]
    DU W. Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis [J]. Engineering Geology, 2018, 239: 13 − 21. doi: 10.1016/j.enggeo.2018.03.012
    [9]
    LI D Q, WANG M X, DU W. Influence of spatial variability of soil strength parameters on probabilistic seismic slope displacement hazard analysis [J]. Engineering Geology, 2020, 276: 105744.
    [10]
    王斌, 车爱兰, 葛修润. 岩质高陡边坡动力响应及失稳机制大型振动台模型试验研究[J]. 上海交通大学学报, 2015, 49(7): 951 − 956.

    WANG Bin, CHE Ailan, GE Xiurun. Study of large-scale shaking table model test on dynamic response and instability mechanism of high-steep rock slopes [J]. Journal of Shanghai Jiao tong University, 2015, 49(7): 951 − 956. (in Chinese)
    [11]
    李典庆, 肖特, 曹子君, 等. 基于高效随机有限元法的边坡风险评估[J]. 岩土力学, 2016, 37(7): 1994 − 2003.

    LI Dianqing, XIAO Te, CAO Zijun, et al. Slope risk assessment based on high-efficiency stochastic finite element method [J]. Rock and Soil Mechanics, 2016, 37(7): 1994 − 2003. (in Chinese)
    [12]
    张泽林, 吴树仁, 王涛, 等. 地震作用下黄土–泥岩边坡动力响应及破坏特征离心机振动台试验研究[J]. 岩石力学与工程学报, 2016, 35(9): 1844 − 1853.

    ZHANG Zelin, WU Shuren, WANG Tao, et al. Dynamic response and failure characteristics of loess-mudstone slopes under earthquake. Centrifuge shaking table test study [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1844 − 1853. (in Chinese)
    [13]
    WANG L, WU Z, XIA K, et al. Amplification of thickness and topography of loess deposit on seismic ground motion and its seismic design methods [J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105090. doi: 10.1016/j.soildyn.2018.02.021
    [14]
    ZHAO L, HUANG Y, HU H. Stochastic seismic response of a slope based on large-scale shaking-table tests [J]. Engineering Geology, 2020, 277: 105782. doi: 10.1016/j.enggeo.2020.105782
    [15]
    WANG W, LI D Q, LIU Y, et al. Influence of ground motion duration on the seismic performance of earth slopes based on numerical analysis [J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106595. doi: 10.1016/j.soildyn.2021.106595
    [16]
    郑勇, 马宏生, 吕坚, 等. 汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学(D辑:地球科学), 2009, 39(4): 413 − 426.

    ZHENG Yong, MA Hongsheng, LYU Jian, et al. The focal mechanism solution of the strong aftershocks (Ms≥5.6) of the Wenchuan earthquake and its relationship with the seismogenic structure [J]. Science in China (Series D: Earth Sciences), 2009, 39(4): 413 − 426. (in Chinese)
    [17]
    刘杰, 易桂喜, 张致伟, 等. 2013年4月20日四川芦山M7.0级地震介绍[J]. 地球物理学报, 2013, 56(4): 1404 − 1407.

    LIU Jie, YI Guixi, ZHANG Zhiwei, et al. Introduction to the M7.0 earthquake in Lushan, Sichuan on April 20, 2013 [J]. Chinese Journal of Geophysics, 2013, 56(4): 1404 − 1407. (in Chinese)
    [18]
    朱瑞广, 吕大刚, 李雁军, 等. 考虑余震影响的非延性RC框架模型振动台试验[J]. 地震工程与工程振动, 2014, 34(增刊 1): 535 − 541.

    ZHU Ruiguang, LYU Dagang, LI Yanjun, et al. Shaking table test of a non-ductile RC frame model considering the effects of aftershocks [J]. Earthquake Engineering and Engineering Vibration, 2014, 34(Suppl 1): 535 − 541. (in Chinese)
    [19]
    于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3): 47 − 53, 114. doi: 10.6052/j.issn.1000-4750.2016.03.0206

    YU Xiaohui, LYU Dagang, XIAO Han. Study on incremental damage spectrum of main-aftershock sequence ground motions [J]. Engineering Mechanics, 2017, 34(3): 47 − 53, 114. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0206
    [20]
    于晓辉, 乔雨蒙, 代旷宇, 等. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学, 2019, 36(3): 121 − 130. doi: 10.6052/j.issn.1000-4750.2017.12.0941

    YU Xiaohui, QIAO Yumeng, DAI Kuangyu, et al. Incremental damage analysis of nonlinear single degree of freedom system under main-aftershock sequence [J]. Engineering Mechanics, 2019, 36(3): 121 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0941
    [21]
    ZHOU Z, YU X, LU D. Identifying optimal intensity measures for predicting damage potential of mainshock–aftershock sequences [J]. Applied Sciences, 2020, 10(19): 6795. doi: 10.3390/app10196795
    [22]
    周洲, 于晓辉, 吕大刚. 主余震序列作用下结构增量损伤比研究[J]. 工程力学, 2021, 38(11): 147 − 159. doi: 10.6052/j.issn.1000-4750.2020.11.0791

    ZHOU Zhou, YU Xiaohui, LYU Dagang. Study on incremental damage ratios of structures due to mainshock-aftershock earthquake sequences [J]. Engineering Mechanics, 2021, 38(11): 147 − 159. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0791
    [23]
    韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124 − 133. doi: 10.6052/j.issn.1000-4750.2019.01.0116

    HAN Jianping, LI Jun. Seismic fragility analysis of low-ductile RC frame accounting for the influence of mainshock-aftershock sequences [J]. Engineering Mechanics, 2020, 37(2): 124 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0116
    [24]
    申家旭, 陈隽, 丁国. 基于Copula理论的序列型地震动随机模型[J]. 工程力学, 2021, 38(1): 27 − 39. doi: 10.6052/j.issn.1000-4750.2020.03.0128

    SHEN Jiaxu, CHEN Jun, DING Guo. A stochastic model for sequential ground motions based on the copula theory [J]. Engineering Mechanics, 2021, 38(1): 27 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0128
    [25]
    陈金昌. 黄土边坡震后稳定性评价方法[D]. 兰州: 中国地震局兰州地震研究所, 2020.

    CHEN Jinchang. Post-earthquake stability evaluation method of loess slope [D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration, 2020. (in Chinese)
    [26]
    BATH M. Lateral inhomogeneities of the upper mantle [J]. Tectonophysics, 1965, 2(6): 483 − 514. doi: 10.1016/0040-1951(65)90003-X
    [27]
    陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2009.

    CHEN Yumin, XU Dingping. FLAC/FLAC3D foundation and engineering examples [M]. Beijing: China Water Power Press, 2009. (in Chinese)
    [28]
    KARRAY M, HUSSIEN M N, DELISLE M C, et al. Framework to assess pseudo-static approach for seismic stability of clayey slopes [J]. Canadian Geotechnical Journal, 2018, 55(12): 1860 − 1876. doi: 10.1139/cgj-2017-0383
    [29]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects (terzaghi lecture) [J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(6): 603 − 624. doi: 10.1061/JSFEAQ.0001756
    [30]
    JAYARAM N, BAKER J W. Statistical tests of the joint distribution of spectral acceleration values [J]. Bulletin of the Seismological Society of America, 2008, 98(5): 2231 − 2243. doi: 10.1785/0120070208
  • Cited by

    Periodical cited type(4)

    1. 姚鑫鑫,任叶飞,岸田忠大,温瑞智,王宏伟,冀昆. 满足数据同一性的强震动记录去噪滤波后处理输出方法. 工程力学. 2025(01): 152-163 . 本站查看
    2. 涂义亮,陈晓虎,王星驰,柴贺军,张立舟,张瑞. 基于连续-离散耦合强度折减法的边坡稳定性分析. 工程力学. 2025(03): 238-249 . 本站查看
    3. 李典庆,单晟治,王顺,杜文琪. 考虑土体空间变异性的液化区埋地管道上浮反应与易损性分析. 工程力学. 2024(09): 31-41 . 本站查看
    4. 贾志波,陶连金,潘菁,任育杰,邱明洋,刘建功,邓力嘉. 基于修正抗滑桩模型的地震边坡稳定性研究. 振动与冲击. 2024(24): 14-23 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (389) PDF downloads (118) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return