Citation: | WANG Shu-hong, HOU Qin-kuan, YONG Rui, ZHONG Zhen. THE EFFECTIVENESS OF SAMPLE SELECTION METHODS IN STUDY OF SHEAR STRENGTH ANISOTROPY OF ROCK JOINTS[J]. Engineering Mechanics, 2023, 40(1): 168-179. DOI: 10.6052/j.issn.1000-4750.2021.08.0601 |
[1] |
王存根, 王述红, 张紫杉, 等. 含结构面岩体的岩桥贯通系数修正及其应用[J]. 工程力学, 2017, 34(5): 95 − 104. doi: 10.6052/j.issn.1000-4750.2015.11.0905
WANG Cungen, WANG Shuhong, ZHANG Zishan, et al. Rock bridge coalescence coefficient correction of rock mass with structural surface and its application [J]. Engineering Mechanics, 2017, 34(5): 95 − 104. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.11.0905
|
[2] |
姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915
YAO Chi, HE Chen, JIANG Shuihua. et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915
|
[3] |
陈世江, 王创业, 王超, 等. 岩体结构面剪切强度模型研究进展[J]. 金属矿山, 2017, 46(6): 1 − 7. doi: 10.3969/j.issn.1001-1250.2017.06.001
CHEN Shijiang, WANG Chuangye, WANG Chao, et al. Research progresses on discontinuity shear strength model of rock mass [J]. Metal Mine, 2017, 46(6): 1 − 7. (in Chinese) doi: 10.3969/j.issn.1001-1250.2017.06.001
|
[4] |
王云飞, 马勇超, 李志超, 等. 红砂岩剪切储能与最大剪应变特征试验研究[J]. 工程力学, doi: 10.6052/j.issn.1000-4750.2021.06.0470.
WANG Yunfei, MA Yongchao, LI Zhichao, et al. Experimental study on shear strain energy and maximum shear strain characteristics of red sandstone[J]. Engineering Mechanics, doi: 10.6052/j.issn.1000-4750.2021.06.0470. (in Chinese)
|
[5] |
BARTON N, QUADROS E. Anisotropy is everywhere, to see, to measure, and to model [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1323 − 1339. doi: 10.1007/s00603-014-0632-7
|
[6] |
YONG R, GU L Y, YE J, et al. Neutrosophic function with NNs for analyzing and expressing anisotropy characteristic and scale effect of joint surface roughness [J]. Mathematical Problems in Engineering, 2019, 52: 935 − 946.
|
[7] |
唐欣薇, 黄文敏, 周元德, 等. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153 − 160. doi: 10.6052/j.issn.1000-4750.2017.06.0419
TANG Xinwei, HUANG Wenmin, ZHOU Yuande, et al. Mesoscale structure reconstruction and anisotropic behavior modeling of layered rock under splitting-tensile loading [J]. Engineering Mechanics, 2018, 35(9): 153 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0419
|
[8] |
JING L, NORDL U, STEPHANSSON O. An experimental study on the anisotropy and stress-dependency of the strength and deformability of rock joints [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1992, 29(6): 535 − 542.
|
[9] |
KULATILAKE P H S W, UM J, PANDA B B, et al. Development of a new peak shear strength criteria for anisotropic rock joints [J]. Journal of Engineering Mechanics, 1999, 125(9): 1010 − 1017. doi: 10.1061/(ASCE)0733-9399(1999)125:9(1010)
|
[10] |
叶海旺, 蔡俊, 雷涛, 等. 板岩渐进剪切破坏各向异性及其数值模型研究[J]. 地下空间与工程学报, 2018, 14(4): 90 − 99.
YE Haiwang, CAI Jun, LEI Tao, et al. Anisotropic progressive shear failure of slate and its numerical model [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 90 − 99. (in Chinese)
|
[11] |
彭守建, 岳雨晴, 刘义鑫, 等. 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291 − 3299.
PENG Shoujian, YUE Yuqing, LIU Yixin, et al. Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291 − 3299. (in Chinese)
|
[12] |
胥勋辉, 张国彪, 包含, 等. 基于3D打印技术的岩体结构面各向异性剪切力学行为[J]. 煤田地质与勘探, 2020, 48(1): 154 − 159,167. doi: 10.3969/j.issn.1001-1986.2020.01.020
XU Xunhui, ZHANG Guobiao, BAO Han, et al. Anisotropic shear behavior of rock joint based on 3D printing technology [J]. Coal Geology & Exploration, 2020, 48(1): 154 − 159,167. (in Chinese) doi: 10.3969/j.issn.1001-1986.2020.01.020
|
[13] |
陈世江, 朱万成, 王创业, 等. 考虑各向异性特征的三维岩体结构面峰值剪切强度研究[J]. 岩石力学与工程学报, 2016, 35(10): 2013 − 2021.
CHEN Shijiang, ZHU Wancheng, WANG Chuangye, et al. Peak shear strength of 3D rock discontinuities based on anisotropic properties [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2013 − 2021. (in Chinese)
|
[14] |
周辉, 程广坦, 朱勇, 等. 基于3D雕刻技术的岩体结构面剪切各向异性研究[J]. 岩土力学, 2019, 40(1): 118 − 126.
ZHOU Hui, CHENG Guangtan, ZHU Yong, et al. Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118 − 126. (in Chinese)
|
[15] |
李久林, 唐辉明. 结构面粗糙度和抗剪强度的各向异性效应[J]. 工程勘察, 1994(5): 12 − 16.
LI Jiulin, TANG Huiming. On anisotropy of textural surfaces roughness and peak shear strength [J]. Geotechnical Investigation and Surveying, 1994(5): 12 − 16. (in Chinese)
|
[16] |
游志诚, 王亮清, 杨艳霞, 等. 基于三维激光扫描技术的结构面抗剪强度参数各向异性研究[J]. 岩石力学与工程学报, 2014, 33(1): 3005 − 3008.
YOU Zhicheng, WANG Liangqing, YANG Yanxia, et al. Anisotropic research on shear strength parameters of discontinuity based on three-dimensional laser scanning technology [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 3005 − 3008. (in Chinese)
|
[17] |
祝艳波, 杨艳霞, 曾红彪, 等. 泥质白云岩结构面抗剪强度各向异性的数值模拟[J]. 水电能源科学, 2013, 31(7): 127 − 129, 28.
ZHU Yanbo, YANG Yanxia, ZENG Hongbiao, et al. Numerical simulation of shear strength anisotropy of argillaceous dolomite joints [J]. Water Resources and Power, 2013, 31(7): 127 − 129, 28. (in Chinese)
|
[18] |
吴禄祥, 吕庆, 蔡学桁, 等. 基于旋转采样法的结构面粗糙度各向异性评价[J]. 工程地质学报, 2021, 29(1): 52 − 58.
WU Luxiang, LYU Qing, CAI Xuehang, et al. Anisotropy evaluation of rock joint roughness using rotation sampling method [J]. Journal of Engineering Geology, 2021, 29(1): 52 − 58. (in Chinese)
|
[19] |
沃特科里·V S, 拉马·R D, 萨鲁加·S S. 岩石力学性质手册 [M]. 水利水电岩石力学情报网, 译. 北京: 水利出版社, 1981.
VUTUKURI V S, LAMA R D, SALUJA S S. Handbook on mechanical properties of rock [M]. Water Conservancy and Hydropower Petrology Intelligence, translated. Beijing: Hydraulic Press, 1981. (in Chinese)
|
[20] |
侯钦宽, 雍睿, 杜时贵, 等. 结构面粗糙度统计测量最小样本数确定方法[J]. 岩土力学, 2020, 41(4): 1259 − 1269.
HOU Qinkuan, YONG Rui, DU Shigui, et al. Methods of determining the minimum number of samples for statistical measurement of rock joint roughness [J]. Rock and Soil Mechanics, 2020, 41(4): 1259 − 1269. (in Chinese)
|
[21] |
BAE D S, KIM K S, KOH Y K, et al. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer [J]. Rock Mechanics and Rock Engineering, 2011, 44(4): 497 − 504. doi: 10.1007/s00603-011-0134-9
|
[22] |
FARDIN N, STEPHANSSON O, JING L. The scale dependence of rock joint surface roughness [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 659 − 669. doi: 10.1016/S1365-1609(01)00028-4
|
[23] |
MLYNARCZUK M. Description and classification of rock surface by means of laser profilometry and mathematical morphology [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 138 − 149. doi: 10.1016/j.ijrmms.2009.09.004
|
[24] |
BARTON N. Review of a new shear strength criterion for rock joints [J]. Engineering Geology, 1973, 7(4): 287 − 332. doi: 10.1016/0013-7952(73)90013-6
|
[25] |
BEER A J, STEAD D, COGGAN J S. Technical note estimation of the joint roughness coefficient (JRC) by visual comparison [J]. Rock Mechanics and Rock Engineering, 2002, 35(1): 65 − 74. doi: 10.1007/s006030200009
|
[26] |
HSIUNG S M, GHOSH A, AHOLA M P, et al. Assessment of conventional methodologies for joint roughness coefficient determination [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(7): 825 − 829. doi: 10.1016/0148-9062(93)90030-H
|
[27] |
GRASSELLI G. Shear strength of rock joints based on quantified surface description [D]. Switzerland: Swiss Federal Institute of Technology, 2001.
|
[28] |
GRASSELLI G, WIRTH J, EGGER P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789 − 800. doi: 10.1016/S1365-1609(02)00070-9
|
[29] |
GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25 − 40. doi: 10.1016/S1365-1609(02)00101-6
|
[30] |
TATONE B, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials [J]. The Review of scientific instruments, 2009, 80(12): 125110.
|
[31] |
葛云峰, 唐辉明, 黄磊, 等. 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31(12): 2508 − 2515. doi: 10.3969/j.issn.1000-6915.2012.12.015
GE Yunfeng, TANG Huiming, HUANG Lei, et al. A new representation method for three-dimensional joint roughness coefficient of rock mass discontinuities [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2508 − 2515. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.015
|
[32] |
唐志成, 夏才初, 宋英龙, 等. Grasselli 节理峰值抗剪强度公式再探[J]. 岩石力学与工程学报, 2012, 31(2): 356 − 361. doi: 10.3969/j.issn.1000-6915.2012.02.015
TANG Zhicheng, XIA Caichu, SONG Yinglong, et al. Discussion about Grasselli's peak shear strength criterion for rock joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 356 − 361. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.015
|
[33] |
COTTRELL B E. Updates to the GG-shear strength criterion [D]. Toronto, Canada: University of Toronto, 2009.
|
[34] |
PATTON F D. Multiple modes of shear failure in rock [C]// Proceeding of the 1st ISRM Congress. Lisbon, Portugal, International Society for Rock Mechanics, 1966, 1: 509 − 513.
|
[35] |
GRASSELLI G. Manuel Rocha medal recipient shear strength of rock joints based on quantified surface description [J]. Rock Mechanics and Rock Engineering, 2006, 39(4): 295 − 314. doi: 10.1007/s00603-006-0100-0
|
[36] |
XIA C C, TANG Z C, XIAO W M, et al. New peak shear strength criterion of rock joints based on quantified surface description [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 387 − 400. doi: 10.1007/s00603-013-0395-6
|
[37] |
张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532 − 536. doi: 10.3969/j.issn1000-3630.2009.04.021
ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measure [J]. Technical Acoustics, 2009, 28(4): 532 − 536. (in Chinese) doi: 10.3969/j.issn1000-3630.2009.04.021
|
[38] |
YONG Rui, YE Jun, LIANG Qifeng, et al. Estimation of the joint roughness coefficient (JRC) of rock joints by vector similarity measures [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(2): 735 − 749. doi: 10.1007/s10064-016-0947-6
|
[39] |
DICE L R. Measures of the amount of ecologic association between species [J]. Journal of Ecology, 1945, 26: 297 − 302. doi: 10.2307/1932409
|
[40] |
陶跃华. 基于向量的相似度计算方案[J]. 云南师范大学学报(自然科学版), 2001, 21(5): 17 − 19.
TAO Yuehua. Vector-based similarity calculation scheme [J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2001, 21(5): 17 − 19. (in Chinese)
|
[41] |
JACCARD P. Distribution de la flore alpine dans le Bassin des Drouces et dans quelques regions voisines [J]. Bulletin de la Société Vaudoise des Sciences Naturelles, 1901, 37(140): 241 − 272.
|
[42] |
GENTIER S, RISS J, ARCHAMBAULT G, et al. Influence of fracture geometry on sheared behavior [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1/2): 161 − 174.
|
[43] |
陈世江, 朱万成, 刘树新, 等. 岩体结构面粗糙度各向异性特征及尺寸效应分析[J]. 岩石力学与工程学报, 2015, 34(1): 57 − 66.
CHEN Shijiang, ZHU Wancheng, LIU Shuxin. et al. Anisotropy and size effects of surface roughness of rock joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 57 − 66. (in Chinese)
|
[44] |
洪陈杰, 黄曼, 夏才初, 等. 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098 − 2109.
HONG Chenjie, HUANG Man, XIA Caichu. et al. Study of size effect on the anisotropic variation coefficient of rock joints [J]. Rock and Soil Mechanics, 2020, 41(6): 2098 − 2109. (in Chinese)
|