WANG Shu-hong, HOU Qin-kuan, YONG Rui, ZHONG Zhen. THE EFFECTIVENESS OF SAMPLE SELECTION METHODS IN STUDY OF SHEAR STRENGTH ANISOTROPY OF ROCK JOINTS[J]. Engineering Mechanics, 2023, 40(1): 168-179. DOI: 10.6052/j.issn.1000-4750.2021.08.0601
Citation: WANG Shu-hong, HOU Qin-kuan, YONG Rui, ZHONG Zhen. THE EFFECTIVENESS OF SAMPLE SELECTION METHODS IN STUDY OF SHEAR STRENGTH ANISOTROPY OF ROCK JOINTS[J]. Engineering Mechanics, 2023, 40(1): 168-179. DOI: 10.6052/j.issn.1000-4750.2021.08.0601

THE EFFECTIVENESS OF SAMPLE SELECTION METHODS IN STUDY OF SHEAR STRENGTH ANISOTROPY OF ROCK JOINTS

More Information
  • Received Date: August 03, 2021
  • Revised Date: November 15, 2021
  • Available Online: December 09, 2021
  • The anisotropy of shear strength of rock joints is of great significance to mechanical properties, deformation characteristics and stability of engineering rock masses. The selection of rock joints has an important influence on the study of joint shear strength anisotropy. To compare the effectiveness of sample selection methods, the anisotropy of shear strength was analyzed based on circular samples, square samples and rotated square samples. A natural slate joint in size of 1 m×1 m was selected as the research object, and the morphological characteristics of the slate joint were measured by 3D laser scanning method. The circular, square, and rotated square samples were obtained for comparative analysis. The results indicate that the shear area of the square sample obtained using the direct sampling method changes with the shear directions, and the circular sample can better reflect the anisotropy of the shear strength of joints. The statistical error of shear strength of square and round samples obtained by rotation sampling method is smaller than the error of the samples obtained by direct sampling method. The shear strength of rotated square sample and round sample with equal area are almost identical, and the statistical error is the smallest and the similarity is the largest exceeding 0.9987. Therefore, when the circular samples are not available, the rotated square samples with equal area can be selected to study the anisotropy of shear strength of joints. This study can provide certain help for the selection of rock joints and provide a basis for the study of the anisotropy of shear strength of rock joints.
  • [1]
    王存根, 王述红, 张紫杉, 等. 含结构面岩体的岩桥贯通系数修正及其应用[J]. 工程力学, 2017, 34(5): 95 − 104. doi: 10.6052/j.issn.1000-4750.2015.11.0905

    WANG Cungen, WANG Shuhong, ZHANG Zishan, et al. Rock bridge coalescence coefficient correction of rock mass with structural surface and its application [J]. Engineering Mechanics, 2017, 34(5): 95 − 104. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.11.0905
    [2]
    姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915

    YAO Chi, HE Chen, JIANG Shuihua. et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915
    [3]
    陈世江, 王创业, 王超, 等. 岩体结构面剪切强度模型研究进展[J]. 金属矿山, 2017, 46(6): 1 − 7. doi: 10.3969/j.issn.1001-1250.2017.06.001

    CHEN Shijiang, WANG Chuangye, WANG Chao, et al. Research progresses on discontinuity shear strength model of rock mass [J]. Metal Mine, 2017, 46(6): 1 − 7. (in Chinese) doi: 10.3969/j.issn.1001-1250.2017.06.001
    [4]
    王云飞, 马勇超, 李志超, 等. 红砂岩剪切储能与最大剪应变特征试验研究[J]. 工程力学, doi: 10.6052/j.issn.1000-4750.2021.06.0470.

    WANG Yunfei, MA Yongchao, LI Zhichao, et al. Experimental study on shear strain energy and maximum shear strain characteristics of red sandstone[J]. Engineering Mechanics, doi: 10.6052/j.issn.1000-4750.2021.06.0470. (in Chinese)
    [5]
    BARTON N, QUADROS E. Anisotropy is everywhere, to see, to measure, and to model [J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1323 − 1339. doi: 10.1007/s00603-014-0632-7
    [6]
    YONG R, GU L Y, YE J, et al. Neutrosophic function with NNs for analyzing and expressing anisotropy characteristic and scale effect of joint surface roughness [J]. Mathematical Problems in Engineering, 2019, 52: 935 − 946.
    [7]
    唐欣薇, 黄文敏, 周元德, 等. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153 − 160. doi: 10.6052/j.issn.1000-4750.2017.06.0419

    TANG Xinwei, HUANG Wenmin, ZHOU Yuande, et al. Mesoscale structure reconstruction and anisotropic behavior modeling of layered rock under splitting-tensile loading [J]. Engineering Mechanics, 2018, 35(9): 153 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0419
    [8]
    JING L, NORDL U, STEPHANSSON O. An experimental study on the anisotropy and stress-dependency of the strength and deformability of rock joints [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1992, 29(6): 535 − 542.
    [9]
    KULATILAKE P H S W, UM J, PANDA B B, et al. Development of a new peak shear strength criteria for anisotropic rock joints [J]. Journal of Engineering Mechanics, 1999, 125(9): 1010 − 1017. doi: 10.1061/(ASCE)0733-9399(1999)125:9(1010)
    [10]
    叶海旺, 蔡俊, 雷涛, 等. 板岩渐进剪切破坏各向异性及其数值模型研究[J]. 地下空间与工程学报, 2018, 14(4): 90 − 99.

    YE Haiwang, CAI Jun, LEI Tao, et al. Anisotropic progressive shear failure of slate and its numerical model [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 90 − 99. (in Chinese)
    [11]
    彭守建, 岳雨晴, 刘义鑫, 等. 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291 − 3299.

    PENG Shoujian, YUE Yuqing, LIU Yixin, et al. Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291 − 3299. (in Chinese)
    [12]
    胥勋辉, 张国彪, 包含, 等. 基于3D打印技术的岩体结构面各向异性剪切力学行为[J]. 煤田地质与勘探, 2020, 48(1): 154 − 159,167. doi: 10.3969/j.issn.1001-1986.2020.01.020

    XU Xunhui, ZHANG Guobiao, BAO Han, et al. Anisotropic shear behavior of rock joint based on 3D printing technology [J]. Coal Geology & Exploration, 2020, 48(1): 154 − 159,167. (in Chinese) doi: 10.3969/j.issn.1001-1986.2020.01.020
    [13]
    陈世江, 朱万成, 王创业, 等. 考虑各向异性特征的三维岩体结构面峰值剪切强度研究[J]. 岩石力学与工程学报, 2016, 35(10): 2013 − 2021.

    CHEN Shijiang, ZHU Wancheng, WANG Chuangye, et al. Peak shear strength of 3D rock discontinuities based on anisotropic properties [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2013 − 2021. (in Chinese)
    [14]
    周辉, 程广坦, 朱勇, 等. 基于3D雕刻技术的岩体结构面剪切各向异性研究[J]. 岩土力学, 2019, 40(1): 118 − 126.

    ZHOU Hui, CHENG Guangtan, ZHU Yong, et al. Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118 − 126. (in Chinese)
    [15]
    李久林, 唐辉明. 结构面粗糙度和抗剪强度的各向异性效应[J]. 工程勘察, 1994(5): 12 − 16.

    LI Jiulin, TANG Huiming. On anisotropy of textural surfaces roughness and peak shear strength [J]. Geotechnical Investigation and Surveying, 1994(5): 12 − 16. (in Chinese)
    [16]
    游志诚, 王亮清, 杨艳霞, 等. 基于三维激光扫描技术的结构面抗剪强度参数各向异性研究[J]. 岩石力学与工程学报, 2014, 33(1): 3005 − 3008.

    YOU Zhicheng, WANG Liangqing, YANG Yanxia, et al. Anisotropic research on shear strength parameters of discontinuity based on three-dimensional laser scanning technology [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 3005 − 3008. (in Chinese)
    [17]
    祝艳波, 杨艳霞, 曾红彪, 等. 泥质白云岩结构面抗剪强度各向异性的数值模拟[J]. 水电能源科学, 2013, 31(7): 127 − 129, 28.

    ZHU Yanbo, YANG Yanxia, ZENG Hongbiao, et al. Numerical simulation of shear strength anisotropy of argillaceous dolomite joints [J]. Water Resources and Power, 2013, 31(7): 127 − 129, 28. (in Chinese)
    [18]
    吴禄祥, 吕庆, 蔡学桁, 等. 基于旋转采样法的结构面粗糙度各向异性评价[J]. 工程地质学报, 2021, 29(1): 52 − 58.

    WU Luxiang, LYU Qing, CAI Xuehang, et al. Anisotropy evaluation of rock joint roughness using rotation sampling method [J]. Journal of Engineering Geology, 2021, 29(1): 52 − 58. (in Chinese)
    [19]
    沃特科里·V S, 拉马·R D, 萨鲁加·S S. 岩石力学性质手册 [M]. 水利水电岩石力学情报网, 译. 北京: 水利出版社, 1981.

    VUTUKURI V S, LAMA R D, SALUJA S S. Handbook on mechanical properties of rock [M]. Water Conservancy and Hydropower Petrology Intelligence, translated. Beijing: Hydraulic Press, 1981. (in Chinese)
    [20]
    侯钦宽, 雍睿, 杜时贵, 等. 结构面粗糙度统计测量最小样本数确定方法[J]. 岩土力学, 2020, 41(4): 1259 − 1269.

    HOU Qinkuan, YONG Rui, DU Shigui, et al. Methods of determining the minimum number of samples for statistical measurement of rock joint roughness [J]. Rock and Soil Mechanics, 2020, 41(4): 1259 − 1269. (in Chinese)
    [21]
    BAE D S, KIM K S, KOH Y K, et al. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer [J]. Rock Mechanics and Rock Engineering, 2011, 44(4): 497 − 504. doi: 10.1007/s00603-011-0134-9
    [22]
    FARDIN N, STEPHANSSON O, JING L. The scale dependence of rock joint surface roughness [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 659 − 669. doi: 10.1016/S1365-1609(01)00028-4
    [23]
    MLYNARCZUK M. Description and classification of rock surface by means of laser profilometry and mathematical morphology [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 138 − 149. doi: 10.1016/j.ijrmms.2009.09.004
    [24]
    BARTON N. Review of a new shear strength criterion for rock joints [J]. Engineering Geology, 1973, 7(4): 287 − 332. doi: 10.1016/0013-7952(73)90013-6
    [25]
    BEER A J, STEAD D, COGGAN J S. Technical note estimation of the joint roughness coefficient (JRC) by visual comparison [J]. Rock Mechanics and Rock Engineering, 2002, 35(1): 65 − 74. doi: 10.1007/s006030200009
    [26]
    HSIUNG S M, GHOSH A, AHOLA M P, et al. Assessment of conventional methodologies for joint roughness coefficient determination [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993, 30(7): 825 − 829. doi: 10.1016/0148-9062(93)90030-H
    [27]
    GRASSELLI G. Shear strength of rock joints based on quantified surface description [D]. Switzerland: Swiss Federal Institute of Technology, 2001.
    [28]
    GRASSELLI G, WIRTH J, EGGER P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789 − 800. doi: 10.1016/S1365-1609(02)00070-9
    [29]
    GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25 − 40. doi: 10.1016/S1365-1609(02)00101-6
    [30]
    TATONE B, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials [J]. The Review of scientific instruments, 2009, 80(12): 125110.
    [31]
    葛云峰, 唐辉明, 黄磊, 等. 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31(12): 2508 − 2515. doi: 10.3969/j.issn.1000-6915.2012.12.015

    GE Yunfeng, TANG Huiming, HUANG Lei, et al. A new representation method for three-dimensional joint roughness coefficient of rock mass discontinuities [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2508 − 2515. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.12.015
    [32]
    唐志成, 夏才初, 宋英龙, 等. Grasselli 节理峰值抗剪强度公式再探[J]. 岩石力学与工程学报, 2012, 31(2): 356 − 361. doi: 10.3969/j.issn.1000-6915.2012.02.015

    TANG Zhicheng, XIA Caichu, SONG Yinglong, et al. Discussion about Grasselli's peak shear strength criterion for rock joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 356 − 361. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.015
    [33]
    COTTRELL B E. Updates to the GG-shear strength criterion [D]. Toronto, Canada: University of Toronto, 2009.
    [34]
    PATTON F D. Multiple modes of shear failure in rock [C]// Proceeding of the 1st ISRM Congress. Lisbon, Portugal, International Society for Rock Mechanics, 1966, 1: 509 − 513.
    [35]
    GRASSELLI G. Manuel Rocha medal recipient shear strength of rock joints based on quantified surface description [J]. Rock Mechanics and Rock Engineering, 2006, 39(4): 295 − 314. doi: 10.1007/s00603-006-0100-0
    [36]
    XIA C C, TANG Z C, XIAO W M, et al. New peak shear strength criterion of rock joints based on quantified surface description [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 387 − 400. doi: 10.1007/s00603-013-0395-6
    [37]
    张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532 − 536. doi: 10.3969/j.issn1000-3630.2009.04.021

    ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measure [J]. Technical Acoustics, 2009, 28(4): 532 − 536. (in Chinese) doi: 10.3969/j.issn1000-3630.2009.04.021
    [38]
    YONG Rui, YE Jun, LIANG Qifeng, et al. Estimation of the joint roughness coefficient (JRC) of rock joints by vector similarity measures [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(2): 735 − 749. doi: 10.1007/s10064-016-0947-6
    [39]
    DICE L R. Measures of the amount of ecologic association between species [J]. Journal of Ecology, 1945, 26: 297 − 302. doi: 10.2307/1932409
    [40]
    陶跃华. 基于向量的相似度计算方案[J]. 云南师范大学学报(自然科学版), 2001, 21(5): 17 − 19.

    TAO Yuehua. Vector-based similarity calculation scheme [J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2001, 21(5): 17 − 19. (in Chinese)
    [41]
    JACCARD P. Distribution de la flore alpine dans le Bassin des Drouces et dans quelques regions voisines [J]. Bulletin de la Société Vaudoise des Sciences Naturelles, 1901, 37(140): 241 − 272.
    [42]
    GENTIER S, RISS J, ARCHAMBAULT G, et al. Influence of fracture geometry on sheared behavior [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1/2): 161 − 174.
    [43]
    陈世江, 朱万成, 刘树新, 等. 岩体结构面粗糙度各向异性特征及尺寸效应分析[J]. 岩石力学与工程学报, 2015, 34(1): 57 − 66.

    CHEN Shijiang, ZHU Wancheng, LIU Shuxin. et al. Anisotropy and size effects of surface roughness of rock joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 57 − 66. (in Chinese)
    [44]
    洪陈杰, 黄曼, 夏才初, 等. 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 2020, 41(6): 2098 − 2109.

    HONG Chenjie, HUANG Man, XIA Caichu. et al. Study of size effect on the anisotropic variation coefficient of rock joints [J]. Rock and Soil Mechanics, 2020, 41(6): 2098 − 2109. (in Chinese)
  • Related Articles

    [1]YAO Chi, HE Chen, JIANG Shui-hua, YANG Jian-hua, JIANG Qing-hui. NUMERICAL SIMULATION OF DAMAGE AND FAILURE PROCESS IN ANISOTROPIC BRITTLE ROCKS[J]. Engineering Mechanics, 2019, 36(2): 96-103. DOI: 10.6052/j.issn.1000-4750.2017.12.0915
    [2]LI Zheng-bao, CUI Yan-wei, SONG Kun, MA Hua, TANG Zhen-yun. SHEAR CAPACITY CALCULATION METHOD OF PANEL ZONE IN REINFORCED CONCRETE FRAME UNDER BIDIRECTIONAL LOADING[J]. Engineering Mechanics, 2019, 36(1): 175-182. DOI: 10.6052/j.issn.1000-4750.2017.11.0851
    [3]TANG Xin-wei, HUANG Wen-min, ZHOU Yuan-de, ZHANG Chu-han. MESOSCALE STRUCTURE RECONSTRUCTION AND ANISOTROPIC BEHAVIOR MODELING OF LAYERED ROCK UNDER SPLITTING-TENSILE LOADING[J]. Engineering Mechanics, 2018, 35(9): 153-160. DOI: 10.6052/j.issn.1000-4750.2017.06.0419
    [4]YAO Yang-ping, TIAN Yu, LIU Lin. THREE-DIMENSIONAL ANISOTROPIC UH MODEL FOR SANDS[J]. Engineering Mechanics, 2018, 35(3): 49-55. DOI: 10.6052/j.issn.1000-4750.2017.07.ST12
    [5]YING Hong-wei, WANG Xiao-gang, ZHANG Jin-hong, ZHOU Jian, ZHU Cheng-wei. LIMIT EQUILIBRIUM ANALYSIS ON STABILITY AGAINST BASAL HEAVE OF EXCAVATION IN ANISOTROPY SOFT CLAY[J]. Engineering Mechanics, 2016, 33(9): 131-137. DOI: 10.6052/j.issn.1000-4750.2015.01.0086
    [6]LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. STRAIN LOCALIZATION ANALYSIS OF ANISOTROPIC SANDS BASED ON NON-COAXIAL THEORY[J]. Engineering Mechanics, 2014, 31(3): 205-211. DOI: 10.6052/j.issn.1000-4750.2012.10.0771
    [7]ZHAO Ying. FULLY COUPLED DUAL-POROSITY MODEL FOR OIL-WATER TWO-PHASE FLOW IN ANISOTROPIC FORMATIONS[J]. Engineering Mechanics, 2012, 29(2): 222-229.
    [8]LIU Jun-qing, WANG Ke-lin, HUANG Yi. ANISOTROPIC PARALLELOGRAM PLATES ON ELASTIC FOUNDATION[J]. Engineering Mechanics, 2005, 22(S1): 156-160.
    [9]YANG Qiang, CHEN Xin, ZHOU Wei-yuan. AN ANISOTROPIC YIELD CRITERION BASED ON THE TWO-ORDER FABRIC TENSOR[J]. Engineering Mechanics, 2005, 22(6): 15-20.
    [10]Yang Jie, Peng Jianshe. TRANSVERSE VIBRATION ANALYSIS OF GENERAL ANISOTROPIC TRAPEZOIDAL PLATES[J]. Engineering Mechanics, 1997, 14(1): 110-114.
  • Cited by

    Periodical cited type(3)

    1. 宋盛渊,刘殿泽,李保天,赵明宇,杨泽,黄迪,王思骢. 基于UAV高密度点云的结构面粗糙度分形特征与各向异性. 地球科学. 2025(04): 1599-1611 .
    2. 姜政,陈世江,杜广盛,常建平,周琛鸿,杨付领. 相对法向力下结构面峰值剪切力学性质研究. 矿业研究与开发. 2024(04): 195-202 .
    3. 鲁旭荣,邓爽,吴占廷. 基于巴顿强度准则的某露天矿边坡岩体结构面抗剪强度研究. 科学技术创新. 2023(23): 169-173 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (386) PDF downloads (39) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return