HUA Wen, YE Ji-hong. STUDY ON TWO-PARAMETER CRITERION OF RETICULATED SHELL STRUCTURES UNDER EARTHQUAKE ACTION BASED ON PARK-ANG DAMAGE MODEL[J]. Engineering Mechanics, 2022, 39(9): 48-57. DOI: 10.6052/j.issn.1000-4750.2021.05.0375
Citation: HUA Wen, YE Ji-hong. STUDY ON TWO-PARAMETER CRITERION OF RETICULATED SHELL STRUCTURES UNDER EARTHQUAKE ACTION BASED ON PARK-ANG DAMAGE MODEL[J]. Engineering Mechanics, 2022, 39(9): 48-57. DOI: 10.6052/j.issn.1000-4750.2021.05.0375

STUDY ON TWO-PARAMETER CRITERION OF RETICULATED SHELL STRUCTURES UNDER EARTHQUAKE ACTION BASED ON PARK-ANG DAMAGE MODEL

More Information
  • Received Date: May 19, 2021
  • Revised Date: December 15, 2021
  • Accepted Date: December 30, 2021
  • Available Online: December 30, 2021
  • The performance-based seismic design method requires explicit categorization of performance levels of structures, as well as reasonable definition of corresponding performance indicators. Based on the Park-Ang damage model and the response characteristics of displacement and energy dissipation of reticulated shells under earthquake action, a two-parameter model is proposed which is a non-linear combination of two dimensional parameters: maximum deformation and plastic energy dissipation. According to China's seismic code, characteristics of reticulated shells and existing research results, four performance points (LS-1, LS-2, LS-3, and LS-4) are used to classify the performance of reticulated shells into five levels: intact, slightly damaged, moderately damaged, severely damaged, and collapsed. Through 216 groups of comprehensive calculation examples considering different spans, rise-span ratios, roof loads, member sizes and seismic effects, the pending parameter values of the model are fitted. And then a two-parameter criterion suitable for reticulated shell structures is proposed. The corresponding index values (D) at
    the four performance points (LS-1, LS-2, LS-3, and LS-4) are 0.3, 0.6, 1.0, and ∞, respectively. The effectiveness and universality of the criterion are verified by shaking table tests of two large-scale reticulated shell. The results show that the two-parameter criterion and the values of performance points proposed in this paper can reflect the performance levels of reticulated shell structures, and have good effectiveness and universality. This criterion can be used for the performance-based seismic design and seismic risk assessment of reticulated shell structures.
  • [1]
    马宏旺, 吕西林. 建筑结构基于性能抗震设计的几个问题[J]. 同济大学学报, 2002, 30(12): 1429 − 1434.

    Ma Hongwang, Lü Xilin. Some problems about performance-based seismic design [J]. Journal of Tongji University, 2002, 30(12): 1429 − 1434. (in Chinese)
    [2]
    吕大刚, 李晓鹏, 王光远. 基于可靠度和性能的结构整体地震易损性分析[J]. 自然灾害学报, 2006, 15(2): 107 − 114. doi: 10.3969/j.issn.1004-4574.2006.02.018

    Lü Dagang, Li Xiaopeng, Wang Guangyuan. Global seismic fragility analysis of structures based on reliability and performance [J]. Journal of Nature Disasters, 2006, 15(2): 107 − 114. (in Chinese) doi: 10.3969/j.issn.1004-4574.2006.02.018
    [3]
    聂桂波, 王薇, 杜柯, 等. 大跨空间结构抗震理论发展综述[J]. 世界地震工程, 2020, 36(2): 24 − 37.

    Nie Guibo, Wang Wei, Du Ke, et al. A review and prospect of the seismic design theory for large span spatial structures [J]. World Earthquake Engineering, 2020, 36(2): 24 − 37. (in Chinese)
    [4]
    Shahnazaryan D, O'Reilly G J. Integrating expected loss and collapse risk in performance-based seismic design of structures [J]. Bulletin of Earthquake Engineering, 2021, 3: 1 − 39.
    [5]
    SEAOC Vision 2000 Committee, Performance-based seismic engineering of buildings [R]. Engineers Association of California, Sacramento, California, USA, 1995: 1 − 10.
    [6]
    ATC-40, Seismic evaluation and retrofit of concrete buildings [R]. Applied Technology Council Red Wood City, California, 1996: 1 − 12.
    [7]
    FEMA 273, NEHRP Commentary on the guidelines for the rehabilitation of buildings [R]. Federal Emergency Management Agency, Washington, D. C. , 1996: 1 − 8.
    [8]
    CECS 160: 2004, 建筑工程抗震性态设计通则(试用)[S]. 北京: 中国计划出版社, 2004.

    CECS 160: 2004, General rule for performance-based seismic design of buildings [S]. Beijing: China Planning Press, 2004. (in Chinese)
    [9]
    GB 50011−2010, 建筑抗震设计规范(2016年版)[S]. 北京: 中国建筑工业出版社, 2016.

    GB 50011−2010, Cord for seismic design of building [S]. Beijing: China Construction Industry Press, 2016. (in Chinese).
    [10]
    周定松, 吕西林, 蒋欢军. 钢筋混凝土框架结构基于性能的抗震设计方法[J]. 四川建筑科学研究, 2005, 31(6): 122 − 127. doi: 10.3969/j.issn.1008-1933.2005.06.035

    Zhou Dingsong, Lü Xilin, Jiang Huanjun. Performance-based seismic design method for RC frame structures [J]. Sichuan Building Science, 2005, 31(6): 122 − 127. (in Chinese) doi: 10.3969/j.issn.1008-1933.2005.06.035
    [11]
    章红梅. 剪力墙结构基于性态的抗震设计方法研究[D]. 上海: 同济大学, 2007: 130 − 149.

    Zhang Hongmei. Study on the performance-based seismic design method for shear wall structure [D]. Shanghai: Tongji University, 2007: 130 − 149. (in Chinese)
    [12]
    辛力, 梁兴文. 基于性能的RC框架结构抗震设计新法[J]. 西安建筑科技大学学报(自然科学版), 2007, 39(6): 790 − 796.

    Xin Li, Liang Xingwen. A new seismic design method of RC frames according to performance-based theory [J]. Journal of Xi’an University of Architectural Science and Technology (Natural Science Edition), 2007, 39(6): 790 − 796. (in Chinese)
    [13]
    肖明葵, 马占杰. 结构抗震性能评估的改进模态能力谱法[J]. 重庆大学学报(自然科学版), 2007, 30(2): 115 − 119.

    Xiao Mingkui, Ma Zhanjie. Improved modal capacity spectrum method for estimating seismic performance of structures [J]. Journal of Chongqing University (Natural Science Edition), 2007, 30(2): 115 − 119. (in Chinese)
    [14]
    郑山锁, 杨威, 杨丰, 等. 基于多远增量动力分析(MIDA)方法的RC核心筒结构地震易损性分析[J]. 振动与冲击, 2015, 34(1): 117 − 123.

    Zheng Shansuo, Yang Wei, Yang Feng, et al. Seismic fragility analysis for RC core walls structure based on MIDA method [J]. Journal of Vibration and Shock, 2015, 34(1): 117 − 123. (in Chinese)
    [15]
    李进, 张娇磊, 李书锋, 等. 某新型梁柱节点的装配式钢筋混凝土框架结构基于性能的抗震设计研究[J]. 地震工程学报, 2020, 42(6): 35 − 43.

    Li Jin, Zhang Jiaolei, Li Shufeng, et al. Performance-based seismic design of fabricated reinforced-concrete-frame structures with new beam-column joints [J]. China Earthquake Engineering Journal, 2020, 42(6): 35 − 43. (in Chinese)
    [16]
    杜轲, 燕登, 高嘉伟. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学, 2020, 37(8): 134 − 147. doi: 10.6052/j.issn.1000-4750.2019.09.0551

    Du Ke, Yan Deng, Gao Jiawei. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0551
    [17]
    楚留声, 赫约西, 赵军, 等. CFRP筋-钢筋混凝土剪力墙基于位移的抗震设计方法研究[J]. 建筑结构, 2021, 51(8): 57 − 65.

    Chu Liusheng, He Yuexi, Zhao Jun, et al. Study on displacement-based seismic design method of CFRP-reinforced concrete shear wall [J]. Building Structure, 2021, 51(8): 57 − 65. (in Chinese)
    [18]
    Wu F, Zhou J, Zhao Y, et al. Performance-based seismic fragility and risk assessment of five-span continuous rigid frame bridges [J]. Advances in Civil Engineering, 2021, 1: 1 − 15.
    [19]
    Gwa D, Edrc B, Lw B, et al. Performance-based seismic assessment of an historic high-rise masonry building considering soil-structure interaction-Science Direct [J]. Structures, 2021, 32: 38 − 53. doi: 10.1016/j.istruc.2021.02.060
    [20]
    张耀庭, 杨力, 张江, 等. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018(7): 104 − 116. doi: 10.6052/j.issn.1000-4750.2017.03.0200

    Zhang Yaoting, Yang Li, Zhang Jiang, et al. Study on design method of strong column and weak beam based on fragility for prestressed concrete frame structures [J]. Engineering Mechanics, 2018(7): 104 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0200
    [21]
    程诗焱, 韩建平, 于晓辉, 等. 基于BP神经网络的RC框架结构地震易损性曲面分析: 考虑地震动强度和持时的影响[J]. 工程力学, 2021, 38(12): 107 − 117. doi: 10.6052/j.issn.1000-4750.2020.11.0837

    Cheng Shiyan, Han Jianping, Yu Xiaohui, et al. Seismic fragility surface analysis of RC frame structures based on BP neural networks: accounting for the effects of ground motion intensity and duration [J]. Engineering Mechanics, 2021, 38(12): 107 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0837
    [22]
    郑晓伟, 李宏男, 张营营, 等. 基于概率的高层建筑地震需求模型与风险评估[J]. 工程力学, 2022, 39(9): 31 − 39. doi: 10.6052/j.issn.1000-4750.2021.05.0329

    Zheng Xiaowei, Li Hongnan, Zhang Yingying, et al. Probabilistic seismic demand models and risk assessment for high-rise buildings [J]. Engineering Mechanics, 2022, 39(9): 31 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0329
    [23]
    Shama A, Jones M. Seismic performance-based design of cable-supported bridges: state of practice in the United States [J]. Journal of Bridge Engineering, 2020, 25(12): 04020101: 1 − 10.
    [24]
    Filiatrault A, Perrone D, Merino R J, et al. Performance-based seismic design of nonstructural building elements [J]. Journal of Earthquake Engineering, 2021, 25(2): 237 − 269. doi: 10.1080/13632469.2018.1512910
    [25]
    Razavi N, Gholizadeh S. Seismic collapse safety analysis of performance-based optimally designed reinforced concrete frames considering life-cycle cost [J]. Journal of Building Engineering, 2021, 44: 1 − 14.
    [26]
    Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structural Engineering, 1985, 111(4): 722 − 739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    [27]
    Chai Y H, Romstad K M, Bird S M. Energy-based linear damage model for high-intensity seismic loading [J]. Journal of Structural Engineering, 1995, 121(5): 857 − 864. doi: 10.1061/(ASCE)0733-9445(1995)121:5(857)
    [28]
    江近仁, 孙景江. 砖结构的地震破坏模型[J]. 地震工程与工程振动, 1987, 7(1): 20 − 34.

    Jiang Jinren, Sun Jingjiang. Seismic damage model of brick structure [J]. Earthquake Engineering and Engineering Vibration, 1987, 7(1): 20 − 34. (in Chinese)
    [29]
    欧进萍, 牛荻涛, 王光远. 多层非线性抗震钢结构的模糊动力可靠性分析与设计[J]. 地震工程与工程振动, 1990, 10(4): 27 − 37.

    Ou Jinping, Niu Ditao, Wang Guangyuan. Fuzzy dynamic reliability analysis and design of multi-storey nonlinear seismic steel structures [J]. Earthquake Engineering and Engineering Vibration, 1990, 10(4): 27 − 37. (in Chinese)
    [30]
    牛荻涛, 任利杰. 改进的钢筋混凝土结构双参数地震破坏模型[J]. 地震工程与工程振动, 1996, 4: 44 − 54.

    Niu Ditao, Ren Lijie. A modified seismic damage model with double variables for reinforced concrete structures [J]. Earthquake Engineering and Engineering Vibration, 1996, 4: 44 − 54. (in Chinese)
    [31]
    周知, 钱江, 黄维. 基于修正的Park-Ang损伤模型在钢构件中的应用[J]. 建筑结构学报, 2016, 37(增刊 1): 448 − 454.

    Zhou Zhi, Qian Jiang, Huang Wei. Application of modified Park-Ang damage model to steel members [J]. Journal of Building Structures, 2016, 37(Suppl 1): 448 − 454. (in Chinese)
    [32]
    周知, 钱江, 黄维. 修正的RC剪力墙构件Park-Ang损伤模型[J]. 力学季刊, 2019, 40(1): 97 − 105.

    Zhou Zhi, Qian Jiang, Huang Wei. Application of modified Park-Ang damage model to RC shear wall [J]. Chinese Quarterly of Mechanics, 2019, 40(1): 97 − 105. (in Chinese)
    [33]
    门进杰, 张谦, 徐超, 等. 基于改进 Park-Ang 双参数模型的RCS混合框架结构地震损伤评估[J]. 工程力学, 2020, 37(9): 133 − 143. doi: 10.6052/j.issn.1000-4750.2019.10.0604

    Men Jinjie, Zhang Qian, Xu Chao, et al. Seismic damage assessment of composite frame with reinforced concrete columns and steel beams based on improved Park-Ang double parameter model [J]. Engineering Mechanics, 2020, 37(9): 133 − 143. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0604
    [34]
    尚庆学, 刘瑞康, 王涛. 基于修正Park-Ang 模型的RC剪力墙损伤指数研究[J]. 地震工程与工程振动, 2020, 40(4): 148 − 154.

    Shang Qingxue, Liu Ruikang, Wang Tao. Damage index of RC shear walls based on modified Park-Ang model [J]. Earthquake Engineering and Engineering Vibration, 2020, 40(4): 148 − 154. (in Chinese)
    [35]
    杜文风, 高博青, 董石麟. 单层网壳动力失效的形式与特征研究[J]. 工程力学, 2009, 26(7): 39 − 46.

    Du Wenfeng, Gao Boqing, Dong Shilin. Study on types and characters of dynamical failure for single layer latticed shells [J]. Engineering Mechanics, 2009, 26(7): 39 − 46. (in Chinese)
    [36]
    陆明飞. 考虑节点力学特性的单层网壳结构稳定优化研究[D]. 南京: 东南大学, 2020: 42 − 58.

    Lu Mingfei. Optimization of domes against instability considering joints’ mechanical performance [D]. Nanjing: Southeast University, 2020: 42 − 58. (in Chinese)
    [37]
    郭海山, 沈世钊. 单层网壳结构动力稳定性分析方法[J]. 建筑结构学报, 2003, 24(3): 1 − 9. doi: 10.3321/j.issn:1000-6869.2003.03.001

    Guo Haishan, Shen Shizhao. Analysis method of dynamic stability of single-layer reticulated domes [J]. Journal of Building Structures, 2003, 24(3): 1 − 9. (in Chinese) doi: 10.3321/j.issn:1000-6869.2003.03.001
    [38]
    沈世钊, 支旭东. 球面网壳结构在强震下的失效机理[J]. 土木工程学报, 2005, 38(1): 11 − 20. doi: 10.3321/j.issn:1000-131X.2005.01.002

    Shen Shizhao, Zhi Xudong. Failure mechanism of reticular shells subjected to dynamic actions [J]. China Civil Engineering Journal, 2005, 38(1): 11 − 20. (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.01.002
    [39]
    支旭东, 范峰, 沈世钊. 凯威特型单层球面网壳在强震下的失效研究[J]. 工程力学, 2008, 25(9): 7 − 12.

    Zhi Xudong, Fan Feng, Shen Shizhao. Seismic failure of single-layer reticulated domes [J]. Engineering Mechanics, 2008, 25(9): 7 − 12. (in Chinese)
    [40]
    聂桂波, 刘坤, 支旭东, 等. 网壳结构基于性能的抗震设计方法研究[J]. 土木工程学报, 2018, 51(1): 8 − 12.

    Nie Guibo, Liu Kun, Zhi Xudong, et al. Performance-based seismic design of reticulated shells [J]. China Civil Engineering Journal, 2018, 51(1): 8 − 12. (in Chinese)
    [41]
    JGJ 7−2010, 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.

    JGJ 7−2010, Technical specification for space frame structures [S]. Beijing: China Construction Industry Press, 2010. (in Chinese)
    [42]
    ATC-63, Quantification of building seismic performance factors [S]. Redwood City: Applied Technology Council, 2008.
    [43]
    Trifunac M D, Brady A G. A study on the duration of strong earthquake ground motion [J]. Bulletin of the Seismological Society of America, 1975, 65(3): 581 − 626.
  • Related Articles

    [1]MEN Jin-jie, ZHANG Qian, XU Chao, SHI Qing-xuan. SEISMIC DAMAGE ASSESSMENT OF COMPOSITE FRAME WITH REINFORCED CONCRETE COLUMNS AND STEEL BEAMS BASED ON IMPROVED PARK-ANG DOUBLE PARAMETER MODEL[J]. Engineering Mechanics, 2020, 37(9): 133-143. DOI: 10.6052/j.issn.1000-4750.2019.10.0604
    [2]YU Xiao-hui, LÜ Da-gang, XIAO Han. INCREMENTAL DAMAGE SPECTRA OF MAINSHOCK-AFTERSHOCK SEQUENCE-TYPE GROUND MOTIONS[J]. Engineering Mechanics, 2017, 34(3): 47-53,114. DOI: 10.6052/j.issn.1000-4750.2016.03.0206
    [3]BAI Jiu-lin, YANG Le, OU Jin-ping. ASEISMIC PERFORMANCE OPTIMIZATION OF STEEL FRAME STRUCTURES BASED ON UNIFORM DAMAGE CONCEPT[J]. Engineering Mechanics, 2015, 32(6): 76-83. DOI: 10.6052/j.issn.1000-4750.2013.12.1181
    [4]LUO Wen-wen, LI Ying-min, HAN Jun. A MODIFIED PARK-ANG SEISMIC DAMAGE MODEL CONSIDERING THE LOAD PATH EFFECTS[J]. Engineering Mechanics, 2014, 31(7): 112-118,128. DOI: 10.6052/j.issn.1000-4750.2013.01.0070
    [5]FU Guo, LIU Bo-quan, XING Guo-hua. THE RESEARCH AND CALCULATION ON MODIFIED PARK-ANG DOUBLE PARAMETER SEISMIC DAMAGE MODEL BASED ON ENERGY DISSIPATION[J]. Engineering Mechanics, 2013, 30(7): 84-90. DOI: 10.6052/j.issn.1000-4750.2012.01.0051
    [6]CHEN Xin, YAN Shi, LI Bing, ZHAO Nai-zhi. EXPERIMENTAL STUDY ON DAMAGE MODEL FOR HSC COLUMNS[J]. Engineering Mechanics, 2013, 30(增刊): 154-158. DOI: 10.6052/j.issn.1000-4750.2012.05.S029
    [7]YIN Jiang, YI Wei-jian, HU Qi-gao. THE NEW METHOD FOR ESTIMATING SEISMIC PERFORMANCE OF STRUCTURES[J]. Engineering Mechanics, 2010, 27(03): 123-131.
    [8]WANG Chun-ling, HUANG Yi, CAO Cai-qin. COMPUTATIONAL ACCURACY OF THE PLATE ON TWO-PARAMETER SUBGRADE[J]. Engineering Mechanics, 2008, 25(7): 24-027,.
    [9]Wang Yuanhan, Liu Qiong. BOUNDARY COLLOCATION METHOD FOR PLATE RESTING ON A TWO-PARAMETER ELASTIC MEDIUM[J]. Engineering Mechanics, 1996, 13(3): 69-77.
    [10]Liu Xingye, Zheng Jianjun. DYNAMIC RING FUNDAMENTAL SOLUTIONS OF PLATES ON TWO-PARAMETERS FOUNDATION[J]. Engineering Mechanics, 1993, 10(4): 77-82.
  • Cited by

    Periodical cited type(2)

    1. 华文,叶继红. 网壳结构多参数韧性评价指标. 工程力学. 2024(11): 45-56 . 本站查看
    2. 朱帅. 某建筑双钢管混凝土结构节点抗震性能研究. 砖瓦. 2023(12): 96-98 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (448) PDF downloads (93) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return