Citation: | DENG Yue-bao, MAO Wei-yun, YU Lei, ZHU Yao-hong, XIE Kang-he. CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT[J]. Engineering Mechanics, 2022, 39(8): 103-113. DOI: 10.6052/j.issn.1000-4750.2021.04.0292 |
[1] |
殷建华. 从本构模型研究到试验和光纤监测技术研发[J]. 岩土工程学报, 2011, 33(1): 1 − 15.
Yin Jianhua. From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1 − 15. (in Chinese)
|
[2] |
任鹏, 王鹏, 张华, 等. 黏土蠕变非线性特性及其分数阶导数蠕变模型[J]. 工程力学, 2020, 37(9): 153 − 160, 207. doi: 10.6052/j.issn.1000-4750.2019.10.0624
Ren Peng, Wang Peng, Zhang Hua, et al. Nonlinear behavior of clay creep and its fractional derivative creep model [J]. Engineering Mechanics, 2020, 37(9): 153 − 160, 207. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0624
|
[3] |
陈晓平, 白世伟. 软土蠕变-固结特性及计算模型研究[J]. 岩石力学与工程学报, 2003, 22(5): 728 − 734. doi: 10.3321/j.issn:1000-6915.2003.05.008
Chen Xiaoping, Bai Shiwei. Research on creep-consolidation characteristics and calculation model of soft soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 728 − 734. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.05.008
|
[4] |
陈昌富, 朱世民, 毛凤山, 等. 红黏土固结-蠕变特性及其耦合模型[J]. 工程地质学报, 2019, 27(4): 723 − 728.
Chen Changfu, Zhu Shimin, Mao Fengshan, et al. Characterization and modeling of coupled consolidation- creep behavior of red clay [J]. Journal of Engineering Geology, 2019, 27(4): 723 − 728. (in Chinese)
|
[5] |
吕塞·拉卢伊, 何莉塞·迪·唐纳. 能源地下结构[M]. 孔纲强, 译. 北京: 中国建筑工业出版社, 2016.
Laloui L, Di Donna A. Energy geostructures: innovation in underground engineering [M]. Kong Gangqiang, translate. Beijing: China Architecture & Building Press, 2016. (in Chinese)
|
[6] |
夏才初, 张国柱, 孙猛. 能源地下结构的理论与应用-地下结构内埋管地源热泵系统[M]. 上海: 同济大学出版社, 2015.
Xia Caichu, Zhang Guozhu, Sun Meng. Theory and application of energy underground structure-buried pipe ground source heat pump system in underground structure [M]. Shanghai: Tongji University Press, 2015. (in Chinese)
|
[7] |
JGJ/T 438−2018, 中华人民共和国住房与城乡建设部桩基地热能利用技术标准[S]. 北京: 中国建筑工业出版社, 2018.
JGJ/T 438−2018, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for utilization of geothermal energy through piles [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
|
[8] |
卜宜顺, 杨圣奇, 黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究[J]. 工程力学, 2021, 38(5): 122 − 130. doi: 10.6052/j.issn.1000-4750.2020.06.0374
Bu Yishun, Yang Shengqi, Huang Yanhua. Experimental study on the influence of temperature and damage degree on the permeability of sandstone [J]. Engineering Mechanics, 2021, 38(5): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0374
|
[9] |
赵志宏, 刘桂宏, 徐浩然. 深地能源工程热水力多场耦合效应高效模拟方法[J]. 工程力学, 2020, 37(6): 1 − 18.
Zhao Zhihong, Liu Guihong, Xu Haoran. A robust numearical modeling framework for coupled thermo- hydro-mechanical process in deep geo-energy engineering [J]. Engineering Mechanics, 2020, 37(6): 1 − 18. (in Chinese)
|
[10] |
郭华, 刘干斌, 郑荣跃, 等. 基于Merchant模型的饱和土体热固结理论研究[J]. 岩石力学与工程学报, 2018, 37(6): 1489 − 1495.
Guo Hua, Liu Ganbin, Zheng Rongyue, et al. Thermal consolidation theory of saturated soils based on Merchant model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1489 − 1495. (in Chinese)
|
[11] |
Coccia C J R, McCartney J S. Thermal volume change of poorly draining soils II: Model development and experimental validation [J]. Computers and Geotechnics, 2016, 80: 16 − 25. doi: 10.1016/j.compgeo.2016.06.010
|
[12] |
Cui Y J, Le T T, Tang A M, et al. Investigating the time-dependent behavior of Boom clay under thermomechanical loading [J]. Geotechnique, 2009, 59(4): 319 − 329. doi: 10.1680/geot.2009.59.4.319
|
[13] |
Laloui L, Francois B. ACMEG-T: soil thermos-plasticity model [J]. Journal of Engineering Mechanics, ASCE, 2009, 135(9): 932 − 944. doi: 10.1061/(ASCE)EM.1943-7889.0000011
|
[14] |
Laloui L, Leroueil S, Chalindar S. Modeling the combined effect of strain rate and temperature on one- dimensional compression of soils [J]. Canadian Geotechnical Journal, 2008, 45(12): 1765 − 1777. doi: 10.1139/T08-093
|
[15] |
Di Donna A, Laloui L. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study [J]. Engineering Geology, 2015, 190: 65 − 76. doi: 10.1016/j.enggeo.2015.03.003
|
[16] |
Zhang S, Zhang F. A thermo-elasto-viscoplastic model for soft sedimentary rock [J]. Soils and Foundations, 2009, 49(4): 583 − 595. doi: 10.3208/sandf.49.583
|
[17] |
姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193 − 217.
Yao Yangping. Advanced UH models for soils [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193 − 217. (in Chinese)
|
[18] |
Wang L Z, Wang K J, Hong Y. Modeling temperature- dependent behavior of soft clays [J]. Journal of Engineering Mechanics, 2016, 142(8): 04016054. doi: 10.1061/(ASCE)EM.1943-7889.0001108
|
[19] |
程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581 − 1590. doi: 10.11779/CJGE201509004
Cheng Xiaohui, Chen Zhihui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581 − 1590. (in Chinese) doi: 10.11779/CJGE201509004
|
[20] |
陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 489 − 498. doi: 10.11779/CJGE201403012
Chen Zhihui, Cheng Xiaohui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489 − 498. (in Chinese) doi: 10.11779/CJGE201403012
|
[21] |
Bai B, Yang G C, Li T, Yang G S. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials [J]. Mechanics of Materials, 2019, 139: 103180. doi: 10.1016/j.mechmat.2019.103180
|
[22] |
Leroueil S. The isotache approach. Where are we 50 years after its development by Professor Šuklje? (2006 Prof. Šuklje’s Memorial Lecture) [C]. Ljubljana, Slovenia: Proceedings of the 13th Danube-European Conference on Geotechnical Engineering, Vol. 1. Ljubljana, 2006: 55 − 88.
|
[23] |
Liu Q, Deng Y B, Wang T Y. One-dimensional nonlinear consolidation theory for soft ground considering secondary consolidation and the thermal effect [J]. Computers and Geotechnics, 2018, 104: 22 − 28. doi: 10.1016/j.compgeo.2018.08.007
|
[24] |
邓岳保, 王天园, 孔纲强. 考虑温度效应的饱和土地基固结理论[J]. 岩土工程学报, 2019, 41(10): 1827 − 1835.
Deng Yuebao, Wang Tianyuan, Kong Gangqiang. Consolidation theory for saturated ground considering temperature effects [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1827 − 1835. (in Chinese)
|
[25] |
邓岳保, 毛伟赟, 孔纲强, 等. 考虑温度影响的饱和土有效应力原理[J]. 清华大学学报(自然科学版), 2020, 60(9): 726 − 732.
Deng Yuebao, Mao Weiyun, Kong Gangqiang, et al. Effective stress principle in saturated soil with the effect of temperature [J]. Journal Tsinghua University (Science & Technology), 2020, 60(9): 726 − 732. (in Chinese)
|
[26] |
陶海冰. 热流固作用下软土静动力学特性及应用[D]. 杭州: 浙江大学, 2015.
Tao Haibing. The thermo-hydro- mechanical effect on static and dynamic properties of soft soil and its application [D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
|
[27] |
王宽君. 软土性状的温度效应[D]. 杭州: 浙江大学, 2017.
Wang Kuanjun. Temperature dependent behavior of soft soils [D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[28] |
Abuel-Naga H M, Bergado D T, Bouazza A, et al. Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling [J]. Canadian Geotechnical Journal, 2007, 44: 942 − 956. doi: 10.1139/t07-031
|
[29] |
Laloui L, Cekerevac C. Thermo-plasticity of clays: an isotropic yield mechanism [J]. Computers and Geotechnics, 2003, 30(8): 649 − 660. doi: 10.1016/j.compgeo.2003.09.001
|
[30] |
张国强. 流体力学[M]. 北京: 机械工程出版社, 2006.
Zhang Guoqiang. Fluid mechanics [M]. Beijing: China Machine Press, 2006. (in Chinese)
|
[31] |
Ong C Y, Chai J C, Hino T. Degree of consolidation of clayey deposit with partially penetrating vertical drains [J]. Geotextiles and Geomembranes, 2012, 34: 19 − 27. doi: 10.1016/j.geotexmem.2012.02.008
|