DENG Yue-bao, MAO Wei-yun, YU Lei, ZHU Yao-hong, XIE Kang-he. CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT[J]. Engineering Mechanics, 2022, 39(8): 103-113. DOI: 10.6052/j.issn.1000-4750.2021.04.0292
Citation: DENG Yue-bao, MAO Wei-yun, YU Lei, ZHU Yao-hong, XIE Kang-he. CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT[J]. Engineering Mechanics, 2022, 39(8): 103-113. DOI: 10.6052/j.issn.1000-4750.2021.04.0292

CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT

More Information
  • Received Date: April 17, 2021
  • Revised Date: August 10, 2021
  • Available Online: September 09, 2021
  • Consolidation and creep of soft soil determine the long-term deformation and stability of soft soil ground and structures on it. With the rise and gradual development of thermal geotechnical engineering, studying the consolidation and creep characteristics of soft soil with thermal-mechanical coupling effect into account and establishing a mechanical model are of great significance for evaluating the long-term deformation and stability of soft soil sites in heat-related engineering. In this regard, combing the existing research results on thermal consolidation and creep of soft soils, some empirical formulas considering the temperature effect are presented. A series of tests about thermal consolidation creep for local soft soils are conducted, and the consolidation creep characteristics of typical soft soils and related parameter values are obtained. On this basis, combined with elasto-visco-plastic theory and thermal consolidation theory, a consolidation-creep coupled mechanical model considering temperature effect is derived and established. The calculation results of examples show that the model can reflect the deformation of elasticity, plasticity, viscosity and thermal expansion. It can describe the thermal excess pore water pressure, thermal rebound and thermal deformation of soil, and it can also analyze the temperature effect and time effect of long-term soil deformation. This research can provide a theoretical basis for the analysis of thermal geotechnical engineering problems in soft soil areas.
  • [1]
    殷建华. 从本构模型研究到试验和光纤监测技术研发[J]. 岩土工程学报, 2011, 33(1): 1 − 15.

    Yin Jianhua. From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1 − 15. (in Chinese)
    [2]
    任鹏, 王鹏, 张华, 等. 黏土蠕变非线性特性及其分数阶导数蠕变模型[J]. 工程力学, 2020, 37(9): 153 − 160, 207. doi: 10.6052/j.issn.1000-4750.2019.10.0624

    Ren Peng, Wang Peng, Zhang Hua, et al. Nonlinear behavior of clay creep and its fractional derivative creep model [J]. Engineering Mechanics, 2020, 37(9): 153 − 160, 207. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0624
    [3]
    陈晓平, 白世伟. 软土蠕变-固结特性及计算模型研究[J]. 岩石力学与工程学报, 2003, 22(5): 728 − 734. doi: 10.3321/j.issn:1000-6915.2003.05.008

    Chen Xiaoping, Bai Shiwei. Research on creep-consolidation characteristics and calculation model of soft soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 728 − 734. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.05.008
    [4]
    陈昌富, 朱世民, 毛凤山, 等. 红黏土固结-蠕变特性及其耦合模型[J]. 工程地质学报, 2019, 27(4): 723 − 728.

    Chen Changfu, Zhu Shimin, Mao Fengshan, et al. Characterization and modeling of coupled consolidation- creep behavior of red clay [J]. Journal of Engineering Geology, 2019, 27(4): 723 − 728. (in Chinese)
    [5]
    吕塞·拉卢伊, 何莉塞·迪·唐纳. 能源地下结构[M]. 孔纲强, 译. 北京: 中国建筑工业出版社, 2016.

    Laloui L, Di Donna A. Energy geostructures: innovation in underground engineering [M]. Kong Gangqiang, translate. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [6]
    夏才初, 张国柱, 孙猛. 能源地下结构的理论与应用-地下结构内埋管地源热泵系统[M]. 上海: 同济大学出版社, 2015.

    Xia Caichu, Zhang Guozhu, Sun Meng. Theory and application of energy underground structure-buried pipe ground source heat pump system in underground structure [M]. Shanghai: Tongji University Press, 2015. (in Chinese)
    [7]
    JGJ/T 438−2018, 中华人民共和国住房与城乡建设部桩基地热能利用技术标准[S]. 北京: 中国建筑工业出版社, 2018.

    JGJ/T 438−2018, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for utilization of geothermal energy through piles [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
    [8]
    卜宜顺, 杨圣奇, 黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究[J]. 工程力学, 2021, 38(5): 122 − 130. doi: 10.6052/j.issn.1000-4750.2020.06.0374

    Bu Yishun, Yang Shengqi, Huang Yanhua. Experimental study on the influence of temperature and damage degree on the permeability of sandstone [J]. Engineering Mechanics, 2021, 38(5): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0374
    [9]
    赵志宏, 刘桂宏, 徐浩然. 深地能源工程热水力多场耦合效应高效模拟方法[J]. 工程力学, 2020, 37(6): 1 − 18.

    Zhao Zhihong, Liu Guihong, Xu Haoran. A robust numearical modeling framework for coupled thermo- hydro-mechanical process in deep geo-energy engineering [J]. Engineering Mechanics, 2020, 37(6): 1 − 18. (in Chinese)
    [10]
    郭华, 刘干斌, 郑荣跃, 等. 基于Merchant模型的饱和土体热固结理论研究[J]. 岩石力学与工程学报, 2018, 37(6): 1489 − 1495.

    Guo Hua, Liu Ganbin, Zheng Rongyue, et al. Thermal consolidation theory of saturated soils based on Merchant model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1489 − 1495. (in Chinese)
    [11]
    Coccia C J R, McCartney J S. Thermal volume change of poorly draining soils II: Model development and experimental validation [J]. Computers and Geotechnics, 2016, 80: 16 − 25. doi: 10.1016/j.compgeo.2016.06.010
    [12]
    Cui Y J, Le T T, Tang A M, et al. Investigating the time-dependent behavior of Boom clay under thermomechanical loading [J]. Geotechnique, 2009, 59(4): 319 − 329. doi: 10.1680/geot.2009.59.4.319
    [13]
    Laloui L, Francois B. ACMEG-T: soil thermos-plasticity model [J]. Journal of Engineering Mechanics, ASCE, 2009, 135(9): 932 − 944. doi: 10.1061/(ASCE)EM.1943-7889.0000011
    [14]
    Laloui L, Leroueil S, Chalindar S. Modeling the combined effect of strain rate and temperature on one- dimensional compression of soils [J]. Canadian Geotechnical Journal, 2008, 45(12): 1765 − 1777. doi: 10.1139/T08-093
    [15]
    Di Donna A, Laloui L. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study [J]. Engineering Geology, 2015, 190: 65 − 76. doi: 10.1016/j.enggeo.2015.03.003
    [16]
    Zhang S, Zhang F. A thermo-elasto-viscoplastic model for soft sedimentary rock [J]. Soils and Foundations, 2009, 49(4): 583 − 595. doi: 10.3208/sandf.49.583
    [17]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193 − 217.

    Yao Yangping. Advanced UH models for soils [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193 − 217. (in Chinese)
    [18]
    Wang L Z, Wang K J, Hong Y. Modeling temperature- dependent behavior of soft clays [J]. Journal of Engineering Mechanics, 2016, 142(8): 04016054. doi: 10.1061/(ASCE)EM.1943-7889.0001108
    [19]
    程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581 − 1590. doi: 10.11779/CJGE201509004

    Cheng Xiaohui, Chen Zhihui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581 − 1590. (in Chinese) doi: 10.11779/CJGE201509004
    [20]
    陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 489 − 498. doi: 10.11779/CJGE201403012

    Chen Zhihui, Cheng Xiaohui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489 − 498. (in Chinese) doi: 10.11779/CJGE201403012
    [21]
    Bai B, Yang G C, Li T, Yang G S. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials [J]. Mechanics of Materials, 2019, 139: 103180. doi: 10.1016/j.mechmat.2019.103180
    [22]
    Leroueil S. The isotache approach. Where are we 50 years after its development by Professor Šuklje? (2006 Prof. Šuklje’s Memorial Lecture) [C]. Ljubljana, Slovenia: Proceedings of the 13th Danube-European Conference on Geotechnical Engineering, Vol. 1. Ljubljana, 2006: 55 − 88.
    [23]
    Liu Q, Deng Y B, Wang T Y. One-dimensional nonlinear consolidation theory for soft ground considering secondary consolidation and the thermal effect [J]. Computers and Geotechnics, 2018, 104: 22 − 28. doi: 10.1016/j.compgeo.2018.08.007
    [24]
    邓岳保, 王天园, 孔纲强. 考虑温度效应的饱和土地基固结理论[J]. 岩土工程学报, 2019, 41(10): 1827 − 1835.

    Deng Yuebao, Wang Tianyuan, Kong Gangqiang. Consolidation theory for saturated ground considering temperature effects [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1827 − 1835. (in Chinese)
    [25]
    邓岳保, 毛伟赟, 孔纲强, 等. 考虑温度影响的饱和土有效应力原理[J]. 清华大学学报(自然科学版), 2020, 60(9): 726 − 732.

    Deng Yuebao, Mao Weiyun, Kong Gangqiang, et al. Effective stress principle in saturated soil with the effect of temperature [J]. Journal Tsinghua University (Science & Technology), 2020, 60(9): 726 − 732. (in Chinese)
    [26]
    陶海冰. 热流固作用下软土静动力学特性及应用[D]. 杭州: 浙江大学, 2015.

    Tao Haibing. The thermo-hydro- mechanical effect on static and dynamic properties of soft soil and its application [D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [27]
    王宽君. 软土性状的温度效应[D]. 杭州: 浙江大学, 2017.

    Wang Kuanjun. Temperature dependent behavior of soft soils [D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [28]
    Abuel-Naga H M, Bergado D T, Bouazza A, et al. Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling [J]. Canadian Geotechnical Journal, 2007, 44: 942 − 956. doi: 10.1139/t07-031
    [29]
    Laloui L, Cekerevac C. Thermo-plasticity of clays: an isotropic yield mechanism [J]. Computers and Geotechnics, 2003, 30(8): 649 − 660. doi: 10.1016/j.compgeo.2003.09.001
    [30]
    张国强. 流体力学[M]. 北京: 机械工程出版社, 2006.

    Zhang Guoqiang. Fluid mechanics [M]. Beijing: China Machine Press, 2006. (in Chinese)
    [31]
    Ong C Y, Chai J C, Hino T. Degree of consolidation of clayey deposit with partially penetrating vertical drains [J]. Geotextiles and Geomembranes, 2012, 34: 19 − 27. doi: 10.1016/j.geotexmem.2012.02.008

Catalog

    Article Metrics

    Article views (465) PDF downloads (95) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return