Citation: | YANG Qi, LI Ke-fei. STUDY ON WATER ABSORPTION MODEL OF AIR-ENTRAINING CONCRETE UNDER NATURAL CONDITIONS[J]. Engineering Mechanics, 2022, 39(5): 159-166, 176. DOI: 10.6052/j.issn.1000-4750.2021.03.0165 |
[1] |
时旭东, 汪文强, 田佳伦. 不同强度等级混凝土遭受超低温冻融循环作用的受压强度试验研究[J]. 工程力学, 2020, 37(2): 211 − 220, 240. doi: 10.6052/j.issn.1000-4750.2019.03.0148
Shi Xudong, Wang Wenqiang, Tian Jialun. Experimental study on the compressive strength of concrete of different strength grades experiencing ultralow temperature freeze-thaw cycle action [J]. Engineering Mechanics, 2020, 37(2): 211 − 220, 240. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0148
|
[2] |
罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 − 14, 43. doi: 10.6052/j.issn.1000-4750.2018.08.ST11
Luo Daming, Niu Ditao, Su Li. Research progress on durability of stressed concrete under environmental actions [J]. Engineering Mechanics, 2019, 36(1): 1 − 14, 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.ST11
|
[3] |
魏强, 谢剑, 吴洪海. 超低温冻融循环对混凝土材料性能的影响[J]. 工程力学, 2013, 30(增刊 1): 125 − 131. doi: 10.6052/j.issn.1000-4750.2012.04.S013
Wei Qiang, Xie Jian, Wu Honghai. Experimental analysis on properties of concrete after freeze-thaw cycles under extra-low temperatures [J]. Engineering mechanics, 2013, 30(Suppl 1): 125 − 131. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.S013
|
[4] |
Fagerlund G. Mechanical damage and fatigue effects associated with freeze-thaw of materials [J]. Materials & Structures, 2002: 117 − 132.
|
[5] |
Ehlen M A, Bentz D P. Service Life Prediction for Concrete Pavements and Bridge Decks Exposed to Sulfate Attack and Freeze-Thaw Deterioration, Volume I: CONCLIFE User's [R]. Gaithersburg: FHWA Report, 2001.
|
[6] |
Moradllo M K, Qiao C, Ghantous R M, et al. Quantifying the freeze-thaw performance of air-entrained concrete using the time to reach critical saturation modelling approach [J]. Cement and Concrete Composites, 2019, 106: 103479.
|
[7] |
International Federation for Structural Concrete (fib). fib Bulletin 34: Model Code for Service Life Design [M]. Lausanne: fib, 2006.
|
[8] |
曾强. 水泥基材料低温结晶过程孔隙力学研究[D]. 北京: 清华大学, 2012.
Zeng Qiang. Poromechanics of freezing behavior of cement-based porous materials saturated with salt solution [D]. Beijing: Tsinghua University, 2012. (in Chinese)
|
[9] |
C1585-20, Standard test method for measurement of rate of absorption of water by hydraulic-cement concrete [S]. West Conshohocken: American Society for the Testing of Materials (ASTM), 2020.
|
[10] |
Eriksson D, Gasch T, Ansell A. A hygro-thermo-mechanical multiphase model for long-term water absorption into air-entrained concrete [J]. Transport in Porous Media, 2019, 127(1): 113 − 141. doi: 10.1007/s11242-018-1182-3
|
[11] |
Fagerlund G. The long time water absorption in the air-pore structure of concrete [R]. Report TVBM (Vol. 3051), Division of Building Materials, LTH, Lund University, Lund, Sweden, 1993.
|
[12] |
Hall C, Hamilton A. Beyond the sorptivity: definition, measurement and properties of the secondary sorptivity [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018049-1 − 04018049-7.
|
[13] |
Scott H, Matthieu V, Kimberly E. Dissolution kinetics of trapped air in a spherical void: modeling the long-term saturation of cementitious materials [J]. Cement and Concrete Research, 2020, 130: 105996. doi: 10.1016/j.cemconres.2020.105996
|
[14] |
Snyder K A, Natesaiyer K, Hover K C. The stereological and statistical properties of entrained air voids in concrete: A mathematical basis for air void system characterization [R]// Materials Science of Concrete VI, Mindess S and Skalny J, eds., The American Ceramic Society, Westerville, 2001:129 − 214.
|
[15] |
Zhang Z, Ansari F, Vitillo N. Automated determination of entrained air-void parameters in hardened concrete [J]. ACI Materials Journal, 2005, 102(1): 42 − 48.
|
[16] |
Li H, Xie Y, Lu Y. Air-void parameters measurement of fresh concrete and hardened concrete [J]. Journal of Central South University, 2013, 20: 1103 − 1108. doi: 10.1007/s11771-013-1590-z
|
[17] |
Yokozeki K, Watanabe K, Sakata N, et al. Modeling of leaching from cementitious materials used in underground environment [J]. Applied Clay Science, 2004, 26(1-4): 293 − 308. doi: 10.1016/j.clay.2003.12.027
|
[18] |
李春秋, 李克非. 干湿交替下表层混凝土中氯离子传输: 原理、试验和模拟[J]. 硅酸盐学报, 2010, 38(4): 581 − 589.
Li Chunqiu, Li Kefei. Chloride ion transport in cover concrete under drying-wetting cycles: theory, experiment and modeling [J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 581 − 589. (in Chinese)
|
[19] |
Hall C. Water sorptivity of mortars and concretes: a review [J]. Magazine of Concrete Research, 1990, 41(147): 51 − 61.
|
[20] |
Li K F, Li C Q, Chen Z Y. Influential depth of moisture transport in concrete subject to drying–wetting cycles [J]. Cement & Concrete Composites, 2009, 31(10): 693 − 698.
|
[21] |
Mainguy M. Modeling of isothermal moisture transport in porous media, application to drying of cement-based materials [D]. Paris: Ecole Nationale des Ponts et Chausseés, 1999.
|
[22] |
李春秋. 干湿交替下表层混凝土中水分与离子传输过程研究[D]. 北京: 清华大学, 2009.
Li Chunqiu. Study on water and ionic transport processes in cover concrete under drying-wetting cycles [D]. Beijing: Tsinghua University, 2009. (in Chinese)
|
[23] |
Gui Q, Qin M F, Li K F. Gas permeability and electrical conductivity of structural concretes: Impact of pore structure and pore saturation [J]. Cement and Concrete Research, 2016, 89: 109 − 119. doi: 10.1016/j.cemconres.2016.08.009
|
[24] |
桂强. 水泥基材料气体渗透性研究[D]. 北京: 清华大学, 2016.
Gui Qiang. Study on gas permeability of cement-based materials [D]. Beijing: Tsinghua University, 2016. (in Chinese)
|
[25] |
Castro J, Bentz D, Weiss J. Effect of sample conditioning on the water absorption of concrete [J]. Cement & Concrete Composites, 2011, 33(8): 805 − 813.
|
[1] | GAO Peng, ZHU Ya-xin, XU Yu-zhao, WANG Chang-wei, HAN Kang-ning, LIU Xin, YANG Qiang. A MODIFIED FATIGUE LIFE PREDICTION MODEL AND DAMAGE EVOLUTION MECHANISM OF AERMET100 ULTRA HIGH STRENGTH STEEL UNDER LOW-CYCLE IMPACT FATIGUE LOADING[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.11.0856 |
[2] | SUN Shan-chao, LIU Jin-zhao, WANG Wei-dong, LIU Xiao-ming, WEI Yue-guang. HOLOGRAPHIC IDENTIFICATION MODEL OF WHEEL & RAIL CONTACT FORCE FOR HIHG-SPEED RAILWAY[J]. Engineering Mechanics, 2018, 35(11): 190-196. DOI: 10.6052/j.issn.1000-4750.2017.08.0603 |
[3] | CHEN Bo-jing, QIAN Xiao-yi, QIN Chao-hong, LI Cheng-hui. COMPARATIVE STUDIES ON STRESS ANALYSIS MODEL OF RAILWAY RAILS[J]. Engineering Mechanics, 2013, 30(6): 93-97. DOI: 10.6052/j.issn.1000-4750.2012.03.0174 |
[4] | CHEN Jia-quan, CHEN Guo-jun, WEN Jie-ming. MULTI-AXIAL LOW CYCLE FATIGUE LIFE PREDICTION MODEL BASED ON STRAIN PATH[J]. Engineering Mechanics, 2012, 29(4): 84-89. |
[5] | ZHOU Jing, FENG Xin, LI Xin. RESEARCH ON CRITICAL ISSUES OF LIFE-CYCLE SERVICE SAFETY FOR SUBSEA PIPELINES[J]. Engineering Mechanics, 2011, 28(增刊Ⅱ): 97-108. |
[6] | FU De-long, ZHANG Li, CHENG Jin. MULTIAXIAL LOW CYCLE FATIGUE LIFE PREDICTION MODEL BASED ON PLASTIC ENERGY[J]. Engineering Mechanics, 2007, 24(3): 54-057. |
[7] | ZOU Xiao-li. A STATISTICAL MODEL OF FATIGUE CRACK PROPAGATION LIFE UNDER RANDOM LOADING[J]. Engineering Mechanics, 2005, 22(S1): 31-34. |
[8] | XING Kun-tao, LIU Hong-bin, YUE Qing-rui. RELIABLE LIFE ASSESSMENT OF REMAINING FATIGUE LIFE OF STEEL CRANE STRUCTURES IN SERVICE[J]. Engineering Mechanics, 2004, 21(3): 101-105. |
[9] | Chen Changrong, Huang Weiyans. MODEL FOR PREDICTING EFFECT OF HOLE COLD EXPANDING ON INCREASING CRACK LIFE[J]. Engineering Mechanics, 1996, 13(3): 27-32. |
[10] | Hu Rongcai, Xu Bingye. STUDY OF A NEW MODEL FOR PREDICTION OF CONTACT FATIGUE LIFE[J]. Engineering Mechanics, 1994, 11(3): 47-54. |
1. |
吴廷科. 高速公路水泥混凝土抗冻融技术研究. 交通科技与管理. 2024(09): 122-124 .
![]() | |
2. |
马超,朱健. 纤维素纤维引气混凝土的耐久性及气孔结构研究. 硅酸盐通报. 2024(11): 4047-4054 .
![]() | |
3. |
白卫峰,牛东旭,管俊峰,苑晨阳. 考虑冻融劣化效应的混凝土单轴压缩统计损伤模型. 工程力学. 2023(09): 117-129 .
![]() |