YANG Qi, LI Ke-fei. STUDY ON WATER ABSORPTION MODEL OF AIR-ENTRAINING CONCRETE UNDER NATURAL CONDITIONS[J]. Engineering Mechanics, 2022, 39(5): 159-166, 176. DOI: 10.6052/j.issn.1000-4750.2021.03.0165
Citation: YANG Qi, LI Ke-fei. STUDY ON WATER ABSORPTION MODEL OF AIR-ENTRAINING CONCRETE UNDER NATURAL CONDITIONS[J]. Engineering Mechanics, 2022, 39(5): 159-166, 176. DOI: 10.6052/j.issn.1000-4750.2021.03.0165

STUDY ON WATER ABSORPTION MODEL OF AIR-ENTRAINING CONCRETE UNDER NATURAL CONDITIONS

More Information
  • Received Date: March 05, 2021
  • Revised Date: May 23, 2021
  • Available Online: June 03, 2021
  • The freeze-thaw damage of air-entraining concrete in natural environment is caused by the intrusion of external water and the saturation process in the capillary pores and air-entraining voids. By discussing the process of air dissolution and diffusion, a revised absorption model is built based on Fagerlund's classic long-time absorption theory. The air-entraining mortar absorption test is performed to validate the improved model. Considering the drying–wetting actions, the absorption model of air-entraining concrete in natural environment is proposed. This model consists of two phases: the water intake in natural environment affected by drying and wetting; the saturation of pore-voids system by external water intake. The water intake under natural drying-wetting cycles is evaluated through the concepts of moisture influential depths and equilibrium drying–wetting time ratio. The pore-void saturation process employs the revised absorption model to predict the change of the saturation degree. Afterwards, the two-stage freeze-thaw service life model is applied to a major railway construction project. On the basis of the local meteorological data and of the predetermined characteristics of structural concrete, the key design parameters are obtained with respect to the frost actions and the expected service lives.
  • [1]
    时旭东, 汪文强, 田佳伦. 不同强度等级混凝土遭受超低温冻融循环作用的受压强度试验研究[J]. 工程力学, 2020, 37(2): 211 − 220, 240. doi: 10.6052/j.issn.1000-4750.2019.03.0148

    Shi Xudong, Wang Wenqiang, Tian Jialun. Experimental study on the compressive strength of concrete of different strength grades experiencing ultralow temperature freeze-thaw cycle action [J]. Engineering Mechanics, 2020, 37(2): 211 − 220, 240. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0148
    [2]
    罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 − 14, 43. doi: 10.6052/j.issn.1000-4750.2018.08.ST11

    Luo Daming, Niu Ditao, Su Li. Research progress on durability of stressed concrete under environmental actions [J]. Engineering Mechanics, 2019, 36(1): 1 − 14, 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.08.ST11
    [3]
    魏强, 谢剑, 吴洪海. 超低温冻融循环对混凝土材料性能的影响[J]. 工程力学, 2013, 30(增刊 1): 125 − 131. doi: 10.6052/j.issn.1000-4750.2012.04.S013

    Wei Qiang, Xie Jian, Wu Honghai. Experimental analysis on properties of concrete after freeze-thaw cycles under extra-low temperatures [J]. Engineering mechanics, 2013, 30(Suppl 1): 125 − 131. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.S013
    [4]
    Fagerlund G. Mechanical damage and fatigue effects associated with freeze-thaw of materials [J]. Materials & Structures, 2002: 117 − 132.
    [5]
    Ehlen M A, Bentz D P. Service Life Prediction for Concrete Pavements and Bridge Decks Exposed to Sulfate Attack and Freeze-Thaw Deterioration, Volume I: CONCLIFE User's [R]. Gaithersburg: FHWA Report, 2001.
    [6]
    Moradllo M K, Qiao C, Ghantous R M, et al. Quantifying the freeze-thaw performance of air-entrained concrete using the time to reach critical saturation modelling approach [J]. Cement and Concrete Composites, 2019, 106: 103479.
    [7]
    International Federation for Structural Concrete (fib). fib Bulletin 34: Model Code for Service Life Design [M]. Lausanne: fib, 2006.
    [8]
    曾强. 水泥基材料低温结晶过程孔隙力学研究[D]. 北京: 清华大学, 2012.

    Zeng Qiang. Poromechanics of freezing behavior of cement-based porous materials saturated with salt solution [D]. Beijing: Tsinghua University, 2012. (in Chinese)
    [9]
    C1585-20, Standard test method for measurement of rate of absorption of water by hydraulic-cement concrete [S]. West Conshohocken: American Society for the Testing of Materials (ASTM), 2020.
    [10]
    Eriksson D, Gasch T, Ansell A. A hygro-thermo-mechanical multiphase model for long-term water absorption into air-entrained concrete [J]. Transport in Porous Media, 2019, 127(1): 113 − 141. doi: 10.1007/s11242-018-1182-3
    [11]
    Fagerlund G. The long time water absorption in the air-pore structure of concrete [R]. Report TVBM (Vol. 3051), Division of Building Materials, LTH, Lund University, Lund, Sweden, 1993.
    [12]
    Hall C, Hamilton A. Beyond the sorptivity: definition, measurement and properties of the secondary sorptivity [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018049-1 − 04018049-7.
    [13]
    Scott H, Matthieu V, Kimberly E. Dissolution kinetics of trapped air in a spherical void: modeling the long-term saturation of cementitious materials [J]. Cement and Concrete Research, 2020, 130: 105996. doi: 10.1016/j.cemconres.2020.105996
    [14]
    Snyder K A, Natesaiyer K, Hover K C. The stereological and statistical properties of entrained air voids in concrete: A mathematical basis for air void system characterization [R]// Materials Science of Concrete VI, Mindess S and Skalny J, eds., The American Ceramic Society, Westerville, 2001:129 − 214.
    [15]
    Zhang Z, Ansari F, Vitillo N. Automated determination of entrained air-void parameters in hardened concrete [J]. ACI Materials Journal, 2005, 102(1): 42 − 48.
    [16]
    Li H, Xie Y, Lu Y. Air-void parameters measurement of fresh concrete and hardened concrete [J]. Journal of Central South University, 2013, 20: 1103 − 1108. doi: 10.1007/s11771-013-1590-z
    [17]
    Yokozeki K, Watanabe K, Sakata N, et al. Modeling of leaching from cementitious materials used in underground environment [J]. Applied Clay Science, 2004, 26(1-4): 293 − 308. doi: 10.1016/j.clay.2003.12.027
    [18]
    李春秋, 李克非. 干湿交替下表层混凝土中氯离子传输: 原理、试验和模拟[J]. 硅酸盐学报, 2010, 38(4): 581 − 589.

    Li Chunqiu, Li Kefei. Chloride ion transport in cover concrete under drying-wetting cycles: theory, experiment and modeling [J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 581 − 589. (in Chinese)
    [19]
    Hall C. Water sorptivity of mortars and concretes: a review [J]. Magazine of Concrete Research, 1990, 41(147): 51 − 61.
    [20]
    Li K F, Li C Q, Chen Z Y. Influential depth of moisture transport in concrete subject to drying–wetting cycles [J]. Cement & Concrete Composites, 2009, 31(10): 693 − 698.
    [21]
    Mainguy M. Modeling of isothermal moisture transport in porous media, application to drying of cement-based materials [D]. Paris: Ecole Nationale des Ponts et Chausseés, 1999.
    [22]
    李春秋. 干湿交替下表层混凝土中水分与离子传输过程研究[D]. 北京: 清华大学, 2009.

    Li Chunqiu. Study on water and ionic transport processes in cover concrete under drying-wetting cycles [D]. Beijing: Tsinghua University, 2009. (in Chinese)
    [23]
    Gui Q, Qin M F, Li K F. Gas permeability and electrical conductivity of structural concretes: Impact of pore structure and pore saturation [J]. Cement and Concrete Research, 2016, 89: 109 − 119. doi: 10.1016/j.cemconres.2016.08.009
    [24]
    桂强. 水泥基材料气体渗透性研究[D]. 北京: 清华大学, 2016.

    Gui Qiang. Study on gas permeability of cement-based materials [D]. Beijing: Tsinghua University, 2016. (in Chinese)
    [25]
    Castro J, Bentz D, Weiss J. Effect of sample conditioning on the water absorption of concrete [J]. Cement & Concrete Composites, 2011, 33(8): 805 − 813.
  • Related Articles

    [1]GAO Peng, ZHU Ya-xin, XU Yu-zhao, WANG Chang-wei, HAN Kang-ning, LIU Xin, YANG Qiang. A MODIFIED FATIGUE LIFE PREDICTION MODEL AND DAMAGE EVOLUTION MECHANISM OF AERMET100 ULTRA HIGH STRENGTH STEEL UNDER LOW-CYCLE IMPACT FATIGUE LOADING[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.11.0856
    [2]SUN Shan-chao, LIU Jin-zhao, WANG Wei-dong, LIU Xiao-ming, WEI Yue-guang. HOLOGRAPHIC IDENTIFICATION MODEL OF WHEEL & RAIL CONTACT FORCE FOR HIHG-SPEED RAILWAY[J]. Engineering Mechanics, 2018, 35(11): 190-196. DOI: 10.6052/j.issn.1000-4750.2017.08.0603
    [3]CHEN Bo-jing, QIAN Xiao-yi, QIN Chao-hong, LI Cheng-hui. COMPARATIVE STUDIES ON STRESS ANALYSIS MODEL OF RAILWAY RAILS[J]. Engineering Mechanics, 2013, 30(6): 93-97. DOI: 10.6052/j.issn.1000-4750.2012.03.0174
    [4]CHEN Jia-quan, CHEN Guo-jun, WEN Jie-ming. MULTI-AXIAL LOW CYCLE FATIGUE LIFE PREDICTION MODEL BASED ON STRAIN PATH[J]. Engineering Mechanics, 2012, 29(4): 84-89.
    [5]ZHOU Jing, FENG Xin, LI Xin. RESEARCH ON CRITICAL ISSUES OF LIFE-CYCLE SERVICE SAFETY FOR SUBSEA PIPELINES[J]. Engineering Mechanics, 2011, 28(增刊Ⅱ): 97-108.
    [6]FU De-long, ZHANG Li, CHENG Jin. MULTIAXIAL LOW CYCLE FATIGUE LIFE PREDICTION MODEL BASED ON PLASTIC ENERGY[J]. Engineering Mechanics, 2007, 24(3): 54-057.
    [7]ZOU Xiao-li. A STATISTICAL MODEL OF FATIGUE CRACK PROPAGATION LIFE UNDER RANDOM LOADING[J]. Engineering Mechanics, 2005, 22(S1): 31-34.
    [8]XING Kun-tao, LIU Hong-bin, YUE Qing-rui. RELIABLE LIFE ASSESSMENT OF REMAINING FATIGUE LIFE OF STEEL CRANE STRUCTURES IN SERVICE[J]. Engineering Mechanics, 2004, 21(3): 101-105.
    [9]Chen Changrong, Huang Weiyans. MODEL FOR PREDICTING EFFECT OF HOLE COLD EXPANDING ON INCREASING CRACK LIFE[J]. Engineering Mechanics, 1996, 13(3): 27-32.
    [10]Hu Rongcai, Xu Bingye. STUDY OF A NEW MODEL FOR PREDICTION OF CONTACT FATIGUE LIFE[J]. Engineering Mechanics, 1994, 11(3): 47-54.
  • Cited by

    Periodical cited type(3)

    1. 吴廷科. 高速公路水泥混凝土抗冻融技术研究. 交通科技与管理. 2024(09): 122-124 .
    2. 马超,朱健. 纤维素纤维引气混凝土的耐久性及气孔结构研究. 硅酸盐通报. 2024(11): 4047-4054 .
    3. 白卫峰,牛东旭,管俊峰,苑晨阳. 考虑冻融劣化效应的混凝土单轴压缩统计损伤模型. 工程力学. 2023(09): 117-129 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (362) PDF downloads (58) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return