ZHANG Xin-gang, WANG Hai-ming, YAO Wen-li, QI Zhao-hui, HE Ying. NUMERICAL INVESTIGATION ON SEISMIC TRANSIENT RESPONSE OF NUCLEAR POLAR CRANE CONSIDERING STICK-SLIP EFFECT[J]. Engineering Mechanics, 2022, 39(4): 39-52. DOI: 10.6052/j.issn.1000-4750.2021.02.0133
Citation: ZHANG Xin-gang, WANG Hai-ming, YAO Wen-li, QI Zhao-hui, HE Ying. NUMERICAL INVESTIGATION ON SEISMIC TRANSIENT RESPONSE OF NUCLEAR POLAR CRANE CONSIDERING STICK-SLIP EFFECT[J]. Engineering Mechanics, 2022, 39(4): 39-52. DOI: 10.6052/j.issn.1000-4750.2021.02.0133

NUMERICAL INVESTIGATION ON SEISMIC TRANSIENT RESPONSE OF NUCLEAR POLAR CRANE CONSIDERING STICK-SLIP EFFECT

More Information
  • Received Date: February 08, 2021
  • Revised Date: July 30, 2021
  • Available Online: August 05, 2021
  • The maintainability of the nuclear containment vessel/polar crane coupling system under strong earthquakes is one of the key factors affecting nuclear safety. In order to reveal the influence of stick-slip effect on the seismic performance of the system, the modified LuGre model is used to build the frictional effect between the drive wheel and the track. A linear complementarity problem is introduced to describe the no smooth contact of stacked parts, on this basis, the rigid-flexible coupling dynamic model of polar crane considering multi-point frictional contact is established. The representative strong earthquake records are selected as the bedrock ground motion, and the transient response under multiple conditions is analyzed to reveal the seismic response mechanism of the coupling system. Numerical results show that: the friction between the brake wheel and the track is the key to maintain the system in a desired position, and the stick-slip effect must be considered in the dynamic model. The derailment behavior is affected by three-directional earthquakes, strong horizontal earthquake and weak vertical earthquake can also induce derailment. Instantaneous derailment induces instantaneous impact, the peak wheel pressure can reach 10 times of the static wheel pressure, the peak tension of the main hook reaches 2.5 times of the static tension, and vibration isolation device shall be installed to avoid wire rope breaking.
  • [1]
    Wang Zhiyun, Li Shouju, Lu Shan, et al. Model investigations for seismic responses of a scaled polar crane at a nuclear power station [J]. Nuclear Engineering and Design, 2021, 381: 111330. doi: 10.1016/j.nucengdes.2021.111330
    [2]
    阳涛, 杨哲飚, 陆新征, 等. 核电厂安全壳结构模型碳纤维布加固试验研究[J]. 工程力学, 2017, 34(8): 144 − 153. doi: 10.6052/j.issn.1000-4750.2016.08.0604

    Yang Tao, Yang Zhebiao, Lu Xinzheng, et al. Experimental study of nuclear power plant concrete containment strengthened with externally wrapped carbon fiber reinforced polymer sheets [J]. Engineering Mechanics, 2017, 34(8): 144 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0604
    [3]
    GB 50267−2019, 核电厂抗震设计标准[S]. 北京: 中国计划出版社, 2014.

    GB 50267−2019, Code for seismic design of nuclear power plants [S]. Beijing: China Planning Press, 2014. (in Chinese)
    [4]
    赵密, 王鑫, 钟紫蓝, 等. P波斜入射下非基岩场地中核岛结构地震响应规律研究[J]. 工程力学, 2020, 37(12): 43 − 51, 77. doi: 10.6052/j.issn.1000-4750.2019.12.0744

    Zhao Mi, Wang Xin, Zhong Zilan, et al. Study on seismic responses of nuclear island structure in non-bedrock site under obliquely-incidence of p waves [J]. Engineering Mechanics, 2020, 37(12): 43 − 51, 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0744
    [5]
    高永武, 王涛, 戴君武, 等. 考虑土-结构相互作用的核电厂楼层反应谱研究[J]. 工程力学, 2020, 37(10): 116 − 124. doi: 10.6052/j.issn.1000-4750.2019.11.0675

    Gao Yongwu, Wang Tao, Dai Junwu, et al. Study on floor-response spectrum of nuclear power plants considering soil-structure interactions [J]. Engineering Mechanics, 2020, 37(10): 116 − 124. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0675
    [6]
    周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
    [7]
    尚庆学, 郑迦译, 李吉超, 等. 各国规范对于楼面峰值加速度规定的对比研究[J]. 工程力学, 2020, 37(增刊): 91 − 96. doi: 10.6052/j.issn.1000-4750.2019.05.S013

    Shang Qingxue, Zheng Jiayi, Li Jichao, et al. Comparative study of relevant specifications on peak floor acceleration in current codes of different countries [J]. Engineering Mechanics, 2020, 37(Suppl): 91 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S013
    [8]
    Kumar S, Kumar M. Damping implementation issues for in-structure response estimation of seismically isolated nuclear structures [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(7): 1967 − 1988. doi: 10.1002/eqe.3436
    [9]
    郑鹏, 王琪, 吕敬, 等. 摩擦与滚阻对被动行走器步态影响的研究[J]. 力学学报, 2020, 52(1): 162 − 170. doi: 10.6052/0459-1879-19-216

    Zheng Peng, Wang Qi, Lü Jing, et al. Study on the influence of friction and rolling resistance on the gait of passive dynamic walker [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 162 − 170. (in Chinese) doi: 10.6052/0459-1879-19-216
    [10]
    Tian Q, Flores P, Lankarani H M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints [J]. Mechanism and Machine Theory, 2018, 122: 1 − 57. doi: 10.1016/j.mechmachtheory.2017.12.002
    [11]
    Zhang Xingang, Qi Zhaohui, Wang Gang, et al. Model smoothing method of contact-impact dynamics in flexible multibody systems [J]. Mechanism and Machine Theory, 2019, 138: 124 − 148. doi: 10.1016/j.mechmachtheory.2019.03.039
    [12]
    张欣刚, 齐朝晖, 王刚, 等. 基于线性互补问题的多体系统接触/碰撞动力学研究[J]. 振动与冲击, 2021, 40(5): 276 − 282.

    Zhang Xingang, Qi Zhaohui, Wang Gang, et al. Contact/impact dynamics of multi-body system based on LCP [J]. Journal of Vibration and Shock, 2021, 40(5): 276 − 282. (in Chinese)
    [13]
    Zhang Xingang, Qi Zhaohui, Wang Gang, et al. Numerical investigation of the seismic response of a polar crane based on linear complementarity formulation [J]. Engineering Structures, 2020, 211: 110462. doi: 10.1016/j.engstruct.2020.110462
    [14]
    田强, 刘铖, 李培, 等. 多柔体系统动力学研究进展与挑战[J]. 动力学与控制学报, 2017, 15(5): 385 − 405. doi: 10.6052/1672-6553-2017-039

    Tian Qiang, Liu Cheng, Li Pei, et al. Advances and challenges in dynamics of flexible multibody systems [J]. Journal of Dynamics and Control, 2017, 15(5): 385 − 405. (in Chinese) doi: 10.6052/1672-6553-2017-039
    [15]
    张欣刚, 齐朝晖, 国树东, 等. 核环吊地震反应数值模拟分析[J]. 机械工程学报, 2020, 56(1): 47 − 57. doi: 10.3901/JME.2020.01.047

    Zhang Xingang, Qi Zhaohui, Guo Shudong, et al. Numerical investigation of the earthquake response of nuclear polar crane [J]. Journal of Mechanical Engineering, 2020, 56(1): 47 − 57. (in Chinese) doi: 10.3901/JME.2020.01.047
    [16]
    Pikunov D, Stefanski A. Numerical analysis of the friction-induced oscillator of Duffing's type with modified LuGre friction model [J]. Journal of Sound and Vibration, 2019, 440: 23 − 33. doi: 10.1016/j.jsv.2018.10.003
    [17]
    范纪华, 谷通顺, 王明强, 等. 基于LuGre摩擦模型的接触约束法旋转柔性梁斜碰撞研究[J]. 力学学报, 2021, 53(4): 1156 − 1169. doi: 10.6052/0459-1879-20-350

    Fan Jihua, Gu Tongshun, Wang Mingqiang, et al. Research on oblique impact of rotating flexible beam based oncontact constraint method of LuGre friction mode [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1156 − 1169. (in Chinese) doi: 10.6052/0459-1879-20-350
    [18]
    魏琼, 焦宗夏, 王君, 等. 基于LuGre模型的气动位置伺服系统摩擦补偿控制[J]. 机械工程学报, 2018, 54(20): 131 − 138. doi: 10.3901/JME.2018.20.131

    Wei Qiong, Jiao Zongxia, Wang Jun, et al. Control of pneumatic position servo with lugre model-based friction compensation [J]. Journal of Mechanical Engineering, 2018, 54(20): 131 − 138. (in Chinese) doi: 10.3901/JME.2018.20.131
    [19]
    Simoni L, Beschi M, Visioli A, et al. Inclusion of the dwell time effect in the LuGre friction model [J]. Mechatronics, 2020, 66(2): 102345.
    [20]
    Van B N, Junwon S, Jungwon H, et al. Seismic response investigation of 1/20 scale container crane through shake table test and finite element analysis [J]. Ocean Engineering, 2021, 234: 109266. doi: 10.1016/j.oceaneng.2021.109266
    [21]
    University of California, Berkeley. PEER ground motion database [DB]. http://ngawest2.berkeley.edu/site, 2017-10-08.
  • Cited by

    Periodical cited type(4)

    1. 杨益,程文明. 基于罚函数的桥式起重机地震跳轨仿真分析. 起重运输机械. 2024(04): 32-37 .
    2. 於祖庆,顾子健,兰朋,田青龙. 塔式起重机刚柔耦合多体系统建模与降阶方法. 动力学与控制学报. 2024(08): 58-65 .
    3. 吴世安,计三有. 桥式起重机起升系统非线性建模及仿真. 起重运输机械. 2023(07): 45-50 .
    4. 范春秋. 以“华龙一号”为例的核电站环吊关键技术研究. 设备管理与维修. 2023(09): 21-22 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (427) PDF downloads (68) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return