Citation: | ZHANG Xin-gang, WANG Hai-ming, YAO Wen-li, QI Zhao-hui, HE Ying. NUMERICAL INVESTIGATION ON SEISMIC TRANSIENT RESPONSE OF NUCLEAR POLAR CRANE CONSIDERING STICK-SLIP EFFECT[J]. Engineering Mechanics, 2022, 39(4): 39-52. DOI: 10.6052/j.issn.1000-4750.2021.02.0133 |
[1] |
Wang Zhiyun, Li Shouju, Lu Shan, et al. Model investigations for seismic responses of a scaled polar crane at a nuclear power station [J]. Nuclear Engineering and Design, 2021, 381: 111330. doi: 10.1016/j.nucengdes.2021.111330
|
[2] |
阳涛, 杨哲飚, 陆新征, 等. 核电厂安全壳结构模型碳纤维布加固试验研究[J]. 工程力学, 2017, 34(8): 144 − 153. doi: 10.6052/j.issn.1000-4750.2016.08.0604
Yang Tao, Yang Zhebiao, Lu Xinzheng, et al. Experimental study of nuclear power plant concrete containment strengthened with externally wrapped carbon fiber reinforced polymer sheets [J]. Engineering Mechanics, 2017, 34(8): 144 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0604
|
[3] |
GB 50267−2019, 核电厂抗震设计标准[S]. 北京: 中国计划出版社, 2014.
GB 50267−2019, Code for seismic design of nuclear power plants [S]. Beijing: China Planning Press, 2014. (in Chinese)
|
[4] |
赵密, 王鑫, 钟紫蓝, 等. P波斜入射下非基岩场地中核岛结构地震响应规律研究[J]. 工程力学, 2020, 37(12): 43 − 51, 77. doi: 10.6052/j.issn.1000-4750.2019.12.0744
Zhao Mi, Wang Xin, Zhong Zilan, et al. Study on seismic responses of nuclear island structure in non-bedrock site under obliquely-incidence of p waves [J]. Engineering Mechanics, 2020, 37(12): 43 − 51, 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0744
|
[5] |
高永武, 王涛, 戴君武, 等. 考虑土-结构相互作用的核电厂楼层反应谱研究[J]. 工程力学, 2020, 37(10): 116 − 124. doi: 10.6052/j.issn.1000-4750.2019.11.0675
Gao Yongwu, Wang Tao, Dai Junwu, et al. Study on floor-response spectrum of nuclear power plants considering soil-structure interactions [J]. Engineering Mechanics, 2020, 37(10): 116 − 124. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0675
|
[6] |
周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09
Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
|
[7] |
尚庆学, 郑迦译, 李吉超, 等. 各国规范对于楼面峰值加速度规定的对比研究[J]. 工程力学, 2020, 37(增刊): 91 − 96. doi: 10.6052/j.issn.1000-4750.2019.05.S013
Shang Qingxue, Zheng Jiayi, Li Jichao, et al. Comparative study of relevant specifications on peak floor acceleration in current codes of different countries [J]. Engineering Mechanics, 2020, 37(Suppl): 91 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S013
|
[8] |
Kumar S, Kumar M. Damping implementation issues for in-structure response estimation of seismically isolated nuclear structures [J]. Earthquake Engineering & Structural Dynamics, 2021, 50(7): 1967 − 1988. doi: 10.1002/eqe.3436
|
[9] |
郑鹏, 王琪, 吕敬, 等. 摩擦与滚阻对被动行走器步态影响的研究[J]. 力学学报, 2020, 52(1): 162 − 170. doi: 10.6052/0459-1879-19-216
Zheng Peng, Wang Qi, Lü Jing, et al. Study on the influence of friction and rolling resistance on the gait of passive dynamic walker [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 162 − 170. (in Chinese) doi: 10.6052/0459-1879-19-216
|
[10] |
Tian Q, Flores P, Lankarani H M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints [J]. Mechanism and Machine Theory, 2018, 122: 1 − 57. doi: 10.1016/j.mechmachtheory.2017.12.002
|
[11] |
Zhang Xingang, Qi Zhaohui, Wang Gang, et al. Model smoothing method of contact-impact dynamics in flexible multibody systems [J]. Mechanism and Machine Theory, 2019, 138: 124 − 148. doi: 10.1016/j.mechmachtheory.2019.03.039
|
[12] |
张欣刚, 齐朝晖, 王刚, 等. 基于线性互补问题的多体系统接触/碰撞动力学研究[J]. 振动与冲击, 2021, 40(5): 276 − 282.
Zhang Xingang, Qi Zhaohui, Wang Gang, et al. Contact/impact dynamics of multi-body system based on LCP [J]. Journal of Vibration and Shock, 2021, 40(5): 276 − 282. (in Chinese)
|
[13] |
Zhang Xingang, Qi Zhaohui, Wang Gang, et al. Numerical investigation of the seismic response of a polar crane based on linear complementarity formulation [J]. Engineering Structures, 2020, 211: 110462. doi: 10.1016/j.engstruct.2020.110462
|
[14] |
田强, 刘铖, 李培, 等. 多柔体系统动力学研究进展与挑战[J]. 动力学与控制学报, 2017, 15(5): 385 − 405. doi: 10.6052/1672-6553-2017-039
Tian Qiang, Liu Cheng, Li Pei, et al. Advances and challenges in dynamics of flexible multibody systems [J]. Journal of Dynamics and Control, 2017, 15(5): 385 − 405. (in Chinese) doi: 10.6052/1672-6553-2017-039
|
[15] |
张欣刚, 齐朝晖, 国树东, 等. 核环吊地震反应数值模拟分析[J]. 机械工程学报, 2020, 56(1): 47 − 57. doi: 10.3901/JME.2020.01.047
Zhang Xingang, Qi Zhaohui, Guo Shudong, et al. Numerical investigation of the earthquake response of nuclear polar crane [J]. Journal of Mechanical Engineering, 2020, 56(1): 47 − 57. (in Chinese) doi: 10.3901/JME.2020.01.047
|
[16] |
Pikunov D, Stefanski A. Numerical analysis of the friction-induced oscillator of Duffing's type with modified LuGre friction model [J]. Journal of Sound and Vibration, 2019, 440: 23 − 33. doi: 10.1016/j.jsv.2018.10.003
|
[17] |
范纪华, 谷通顺, 王明强, 等. 基于LuGre摩擦模型的接触约束法旋转柔性梁斜碰撞研究[J]. 力学学报, 2021, 53(4): 1156 − 1169. doi: 10.6052/0459-1879-20-350
Fan Jihua, Gu Tongshun, Wang Mingqiang, et al. Research on oblique impact of rotating flexible beam based oncontact constraint method of LuGre friction mode [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1156 − 1169. (in Chinese) doi: 10.6052/0459-1879-20-350
|
[18] |
魏琼, 焦宗夏, 王君, 等. 基于LuGre模型的气动位置伺服系统摩擦补偿控制[J]. 机械工程学报, 2018, 54(20): 131 − 138. doi: 10.3901/JME.2018.20.131
Wei Qiong, Jiao Zongxia, Wang Jun, et al. Control of pneumatic position servo with lugre model-based friction compensation [J]. Journal of Mechanical Engineering, 2018, 54(20): 131 − 138. (in Chinese) doi: 10.3901/JME.2018.20.131
|
[19] |
Simoni L, Beschi M, Visioli A, et al. Inclusion of the dwell time effect in the LuGre friction model [J]. Mechatronics, 2020, 66(2): 102345.
|
[20] |
Van B N, Junwon S, Jungwon H, et al. Seismic response investigation of 1/20 scale container crane through shake table test and finite element analysis [J]. Ocean Engineering, 2021, 234: 109266. doi: 10.1016/j.oceaneng.2021.109266
|
[21] |
University of California, Berkeley. PEER ground motion database [DB]. http://ngawest2.berkeley.edu/site, 2017-10-08.
|