WANG Zi, GUO Song, LI Chen-chen, ZHANG Dan, XIE Li-feng, LI Bin. EFFECT OF PRESSURE RELIEF HOLE DEPTH ON EXPLOSIVE CONSOLIDATION OF ALUMINUM POWDER[J]. Engineering Mechanics, 2022, 39(10): 238-248. DOI: 10.6052/j.issn.1000-4750.2021.06.0417
Citation: WANG Zi, GUO Song, LI Chen-chen, ZHANG Dan, XIE Li-feng, LI Bin. EFFECT OF PRESSURE RELIEF HOLE DEPTH ON EXPLOSIVE CONSOLIDATION OF ALUMINUM POWDER[J]. Engineering Mechanics, 2022, 39(10): 238-248. DOI: 10.6052/j.issn.1000-4750.2021.06.0417

EFFECT OF PRESSURE RELIEF HOLE DEPTH ON EXPLOSIVE CONSOLIDATION OF ALUMINUM POWDER

More Information
  • Received Date: June 01, 2021
  • Revised Date: December 26, 2021
  • Accepted Date: March 05, 2022
  • Available Online: March 05, 2022
  • Aluminum materials with high mechanical properties were prepared by explosive consolidation, and the mechanical properties, phase and microstructure of aluminum materials were characterized and analyzed. In three groups of tests with different depths of relief hole of 10 mm, 13 mm and 16 mm, the hardness of the aluminum block is similar, which is within the range of HV146.88~HV155.14. When the relief hole is 13 mm deep, the hardness standard deviation of aluminum block is the smallest, which is HV6.89, i.e., about 50% of the other two groups. The compressive strength and elastic modulus of the aluminum block prepared with 13mm pressure relief hole depth are the largest, which are 146.1 MPa and 6.85 GPa respectively. Similarly, the density of aluminum block made under the condition of 13 mm pressure relief hole depth is the largest, which can reach 98.31% of the theoretical density of pure aluminum, with the smallest standard deviation among the three groups of tests, which is 0.39%. It was found by metallographic microscopic test that there were long cracks on the surface of the samples prepared under the conditions of h=10 mm and h=16 mm. The reason was that when the gas storage in the pressure relief hole was small, the gas would exist in the aluminum rod sample; while when the gas storage in the pressure relief hole was large, the aluminum powder at the bottom would be pushed into the pressure relief hole, causing partial looseness. Both will lead to the decrease of the mechanical properties of the aluminum rod. Finally, combined with the fuzzy mathematics comprehensive evaluation method and analytic hierarchy process, the fuzzy mathematics evaluation model of the influence factors of the block aluminum explosive sintering is constructed, and the mechanical properties of the aluminum block prepared with different pressure relief hole depths are quantitatively optimized. The results show that, the comprehensive scores of aluminum prepared by explosive sintering are 73.18, 81.72 and 76.98 respectively, which demonstrate that a pressure relief hole depth of 13 mm will lead to the best mechanical properties of bulk aluminum.
  • [1]
    钟胜, 戴永年. 真空蒸发—冷凝制取超细金属粉末的研究与应用动态[J]. 云南冶金, 1997(6): 43 − 46, 10.

    ZHONG Sheng, DAI Yongnian. Research and application of vacuum evaporation-condensation for preparation of ultrafine metal powders [J]. Yunnan Metallurgy, 1997(6): 43 − 46, 10. (in Chinese)
    [2]
    GAO H, CHEN W, ZHANG Z. Evolution mechanism of surface nano-crystallization of tungsten-copper alloys [J]. Materials Letters, 2016(176): 181 − 184.
    [3]
    HASEGAWA A, FUKUDA M, YABUUCHI K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. Journal of Nuclear Materials, 2016(471): 175 − 183.
    [4]
    包胜, 赵政烨, 罗强. 应力加载历史对铁磁性材料压磁磁场演变规律的影响[J]. 工程力学, 2021, 38(增刊): 259 − 263. doi: 10.6052/j.issn.1000-4750.2020.06.S032

    BAO Sheng, ZHAO Zhengye, LUO Qiang. Influence of stress loading history the evolution of piezomagnetic field of ferromagnetic materials [J]. Engineering Mechanics, 2021, 38(Suppl): 259 − 263. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.S032
    [5]
    KROKHALEV A V, KHARLAMOV V O, KUZ’MIN S V, et al. Formation of the structure of powder materials based on silicon carbide by explosive compaction [J]. Doklady Chemistry, 2020, 494(2): 163 − 165.
    [6]
    李晓杰, 张越举, 阎鸿浩, 等. 纳米 ITO 粉末爆炸压实及后续烧结工艺研究[J]. 材料科学与工艺, 2006, 14(2): 155 − 158. doi: 10.3969/j.issn.1005-0299.2006.02.013

    LI Xiaojie, ZHANG Yueju, YAN Honghao, et al. Study on explosive compaction and subsequent sintering process of nano ITO powder [J]. Materials Science and Technology, 2006, 14(2): 155 − 158. (in Chinese) doi: 10.3969/j.issn.1005-0299.2006.02.013
    [7]
    LI X J, CHEN X, LI K B, et al. Fabrication of Tungsten-Tin alloy powder and its explosive consolidation [J]. Rare Metal Materials and Engineering, 2019, 48(3): 782 − 787.
    [8]
    KROKHALEV A V, KHARLAMOV V O, TUPITSIN M A, et al. Revisiting the possibility of formation of hard alloys from powder mixtures of carbides with metals by explosive compacting without sintering [J]. Russian Journal of Non-Ferrous Metals, 2018, 59(5): 550 − 556. doi: 10.3103/S1067821218050073
    [9]
    张晓立, 王金相, 贾宪振, 等. 钨钛粉末的轴对称爆炸压实[J]. 中国有色金属学报, 2008, 18(8): 1527 − 1533.

    ZHANG Xiaoli, WANG Jinxiang, JIA Xianzhen, et al. Axisymmetric explosive compaction of tungsten and titanium powders [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(8): 1527 − 1533. (in Chinese)
    [10]
    KHRUSTALEV A P, PERVIKOV A V, LERNER M I, et al. Explosive compaction of bimetallic nonconjugated nanoparticles in synthesis of composite materials [J]. Russian Physics Journal, 2019, 61(11): 2142 − 2143. doi: 10.1007/s11182-019-01649-4
    [11]
    FARINHA A R, MENDES R, BARANDA J, et al. Behavior of explosive compacted/consolidated of nanometric copper powders [J]. Journal of Alloys and Compounds, 2009, 483(1-2): 235 − 238. doi: 10.1016/j.jallcom.2008.08.120
    [12]
    王金相, 李晓杰, 李瑞勇, 等. 基于尺寸效应的爆炸粉末烧结颗粒间摩擦升温计算[J]. 工程力学, 2005(增刊 1): 52 − 57.

    WANG Jinxiang, LI Xiaojie, LI Ruiyong, et al. Calculation of temperature rise of interparticle friction in explosive powder sintering based on size effect [J]. Engineering Mechanics, 2005(Suppl 1): 52 − 57. (in Chinese)
    [13]
    LA ROCCA E W. Unique structure of pearlite deformed by explosive load [J]. Acta Metallurgica, 1957, 5(7): 408 − 410. doi: 10.1016/0001-6160(57)90013-5
    [14]
    THORNTON H R, GARRETT D R . Explosive powder metallurgy. II. Processing considerations [J]. Sampe Q, 1977.
    [15]
    CHEN X, LI X, YAN H, et al. Factors affecting explosive compaction–sintering of tungsten–copper coating on a copper surface [J]. Journal of Alloys and Compounds, 2017(729): 1201 − 1208.
    [16]
    MEYERS M A, BENSON D J, OLEVSKY E A. Shock consolidation: Microstructurally-based analysis and computational modeling [J]. Acta Materialia, 1999, 47(7): 2089 − 2108. doi: 10.1016/S1359-6454(99)00083-X
    [17]
    EL-SOBKY H. Mechanics of explosive welding [M]. Berlin, Germany: Springer Netherlands, 1983.
    [18]
    BECK J, ALVARADO M, NEMIR D, et al. Shock-wave consolidation of nanostructured bismuth telluride powders [J]. Journal of Electronic Materials, 2015, 41(6): 1595 − 1600.
    [19]
    ZHOU Q, CHEN P, ZHOU B. The effect of heat treatment on the dynamic behavior of explosively consolidated Ni/Al composites [C]// APS Shock Compression of Condensed Matter Meeting Abstracts. St Louis, MO, USA, AIP Publishing, 2017.
    [20]
    付艳恕, 孙宇新, 王金相, 等. 双管-中心杆爆炸烧结对改进烧结体质量的实验研究[J]. 实验力学, 2008(5): 463 − 468.

    FU Yanshu, SUN Yuxin, WANG Jinxiang, et al. Experimental study on the improvement of sintered mass by double tube and center rod explosive sintering [J]. Journal of Experimental Mechanics, 2008(5): 463 − 468. (in Chinese)
    [21]
    李晓杰, 王占磊, 谢兴华, 等. WC/Al2O3颗粒增强Cu基复合材料爆炸粉末烧结实验研究[J]. 爆炸与冲击, 2006(4): 356 − 360. doi: 10.3321/j.issn:1001-1455.2006.04.012

    LI Xiaojie, WANG Zhanlei, XIE Xinghua, et al. Experimental study on explosive powder sintering of WC/Al2O3 particles reinforced Cu matrix composites [J]. Explosion and Shock Waves, 2006(4): 356 − 360. (in Chinese) doi: 10.3321/j.issn:1001-1455.2006.04.012
    [22]
    桑圣军, 郭浩哲, 李斌, 等. 爆速对纳米铝粉爆炸烧结性能的影响[J]. 高压物理学报, 2018, 32(2): 67 − 73.

    SANG Shengjun, GUO Haozhe, LI Bin, et al. Effect of detonation velocity on explosive sintering properties of nano aluminum powder [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 67 − 73. (in Chinese)
    [23]
    朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428

    ZHU Xiang, YIN Yao, WANG Rui, et al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
    [24]
    熊仲明, 冯成帅. 大跨钢结构安全性模糊综合评估方法的应用研究[J]. 工程力学, 2011, 28(4): 128 − 133.

    XIONG Zhongming, FENG Chengshuai. Application research of fuzzy comprehensive evaluation method for safety of long-span steel structures [J]. Engineering Mechanics, 2011, 28(4): 128 − 133. (in Chinese)
    [25]
    殷琰, 陈海波, 巨阳. 退火处理对紫铜组织和机械性能影响的试验研究[J]. 工程力学, 2018, 35(6): 222 − 230. doi: 10.6052/j.issn.1000-4750.2017.02.0116

    YIN Yan, CHEN Haibo, JU Yang. Experimental research on the effect of annealed treatment in microstructure and mechanical properties of pure copper [J]. Engineering Mechanics, 2018, 35(6): 222 − 230. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0116
    [26]
    GB/T 7314−2017, 金属材料 室温压缩试验方法 [S]. 北京: 中国标准出版社, 2017.

    GB/T 7314−2017, Metallic materials—Compression test method at room temperature [S]. Beijing: China Standards Press, 2017. (in Chinese)
    [27]
    李金平, 杨付, 郭杏林. 多孔微晶玻璃的烧结及其弹性模量研究[J]. 硅酸盐学报, 1999(3): 109 − 114.

    LI Jinping, YANG Fu, GUO Xinglin. Study on sintering and elastic modulus of porous glass ceramics [J]. Journal of the Chinese Ceramic Society, 1999(3): 109 − 114. (in Chinese)
  • Related Articles

    [1]LING Gan-zhan, QIN Da-yan, XIE Wei-wei, WU Xiong-hua, TANG Rui-kai, ZHAO Yu-feng, HOU Kai-wen, CAO Lu, DING Zi-hao. QUANTITATIVE EVALUATION MODEL OF CONCRETE-FILLED STEEL TUBES WITH SPHERICAL-CAP GAPS UPON ULTRASONIC PULSE VELOCITY[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.03.0185
    [2]JIANG Shui-hua, YANG Jian-hua, YAO Chi, HUANG Jin-song. QUANTITATIVE RISK ASSESSMENT OF SLOPE FAILURE CONSIDERING SPATIAL VARIABILITY OF SOIL PROPERTIES[J]. Engineering Mechanics, 2018, 35(1): 136-147. DOI: 10.6052/j.issn.1000-4750.2016.08.0657
    [3]ZHU Qian-kun, LI Hong-nan, DU Yong-feng, ZHANG Qiong. QUANTITATIVE EVALUATION OF VIBRATION SERVICEABILITY OF PEDESTRIAN BRIGDE UNDER DIFFERENT WALKING SPEED[J]. Engineering Mechanics, 2016, 33(10): 97-104. DOI: 10.6052/j.issn.1000-4750.2015.01.0066
    [4]ZHANG Ying, WANG Zi-xing, ZHOU Jun-peng, LIU Ai-ling. EXPERIMENTAL STUDY ON ACOUSTIC EMISSION QUANTITATIVE ASSESSMENT OF Q345 SPECIMEN’S MESOMECHANICAL DAMAGE[J]. Engineering Mechanics, 2014, 31(4): 40-45,60. DOI: 10.6052/j.issn.1000-4750.2012.11.0866
    [5]WANG Jun, MA Yue, ZHANG Ye, CHEN Wei. EXPERIMENTAL RESEARCH AND ANALYSIS ON MECHANICAL PROPERTIES OF CHOPPED BASALT FIBER REINFORCED CONCRETE[J]. Engineering Mechanics, 2014, 31(增刊): 99-102,114. DOI: 10.6052/j.issn.1000-4750.2013.03.S032
    [6]ZHU Hong-ping, XU Wen-sheng, CHEN Xiao-qiang, XIA Yong. QUANTITATIVE CONCRETE-DAMAGE EVALUATION BY ACOUSTIC EMISSION INFORMATION AND RATE-PROCESS THEORY[J]. Engineering Mechanics, 2008, 25(1): 186-191.
    [7]DING Fa-xing, YU Zhi-wu. THEORETICAL ANALYSIS OF MECHANICAL PROPERTIES OF CONCRETE-FILLED TUBULAR STEEL STUB COLUMNS[J]. Engineering Mechanics, 2005, 22(1): 175-181.
    [8]WANG Hui-xiang, SONG Xiao-yan. A QUANTITATIVE ANALYSIS OF CITATIONS, AUTHORS AND FUNDED-PAPERS IN ENGINEERING MECHANICS[J]. Engineering Mechanics, 2004, 21(5): 209-214.
    [9]FAN Shi-chao, DING Wen-jing, LU Ming-wan. QUANTITATIVE ANALYSIS OF DISTURBANCE OF MANIPULATOR MOTION BY FRICTION[J]. Engineering Mechanics, 2003, 20(3): 42-46.
    [10]Xie Heping, Chen Zhida. THE METHOD OF FRACTAL GEOMETRY FOR QUANTITATIVE ANALYSIS OF FRACTURE SURFACES[J]. Engineering Mechanics, 1989, 6(4): 1-8.

Catalog

    Article Metrics

    Article views (289) PDF downloads (35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return