Citation: | WANG Zi, GUO Song, LI Chen-chen, ZHANG Dan, XIE Li-feng, LI Bin. EFFECT OF PRESSURE RELIEF HOLE DEPTH ON EXPLOSIVE CONSOLIDATION OF ALUMINUM POWDER[J]. Engineering Mechanics, 2022, 39(10): 238-248. DOI: 10.6052/j.issn.1000-4750.2021.06.0417 |
[1] |
钟胜, 戴永年. 真空蒸发—冷凝制取超细金属粉末的研究与应用动态[J]. 云南冶金, 1997(6): 43 − 46, 10.
ZHONG Sheng, DAI Yongnian. Research and application of vacuum evaporation-condensation for preparation of ultrafine metal powders [J]. Yunnan Metallurgy, 1997(6): 43 − 46, 10. (in Chinese)
|
[2] |
GAO H, CHEN W, ZHANG Z. Evolution mechanism of surface nano-crystallization of tungsten-copper alloys [J]. Materials Letters, 2016(176): 181 − 184.
|
[3] |
HASEGAWA A, FUKUDA M, YABUUCHI K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. Journal of Nuclear Materials, 2016(471): 175 − 183.
|
[4] |
包胜, 赵政烨, 罗强. 应力加载历史对铁磁性材料压磁磁场演变规律的影响[J]. 工程力学, 2021, 38(增刊): 259 − 263. doi: 10.6052/j.issn.1000-4750.2020.06.S032
BAO Sheng, ZHAO Zhengye, LUO Qiang. Influence of stress loading history the evolution of piezomagnetic field of ferromagnetic materials [J]. Engineering Mechanics, 2021, 38(Suppl): 259 − 263. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.S032
|
[5] |
KROKHALEV A V, KHARLAMOV V O, KUZ’MIN S V, et al. Formation of the structure of powder materials based on silicon carbide by explosive compaction [J]. Doklady Chemistry, 2020, 494(2): 163 − 165.
|
[6] |
李晓杰, 张越举, 阎鸿浩, 等. 纳米 ITO 粉末爆炸压实及后续烧结工艺研究[J]. 材料科学与工艺, 2006, 14(2): 155 − 158. doi: 10.3969/j.issn.1005-0299.2006.02.013
LI Xiaojie, ZHANG Yueju, YAN Honghao, et al. Study on explosive compaction and subsequent sintering process of nano ITO powder [J]. Materials Science and Technology, 2006, 14(2): 155 − 158. (in Chinese) doi: 10.3969/j.issn.1005-0299.2006.02.013
|
[7] |
LI X J, CHEN X, LI K B, et al. Fabrication of Tungsten-Tin alloy powder and its explosive consolidation [J]. Rare Metal Materials and Engineering, 2019, 48(3): 782 − 787.
|
[8] |
KROKHALEV A V, KHARLAMOV V O, TUPITSIN M A, et al. Revisiting the possibility of formation of hard alloys from powder mixtures of carbides with metals by explosive compacting without sintering [J]. Russian Journal of Non-Ferrous Metals, 2018, 59(5): 550 − 556. doi: 10.3103/S1067821218050073
|
[9] |
张晓立, 王金相, 贾宪振, 等. 钨钛粉末的轴对称爆炸压实[J]. 中国有色金属学报, 2008, 18(8): 1527 − 1533.
ZHANG Xiaoli, WANG Jinxiang, JIA Xianzhen, et al. Axisymmetric explosive compaction of tungsten and titanium powders [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(8): 1527 − 1533. (in Chinese)
|
[10] |
KHRUSTALEV A P, PERVIKOV A V, LERNER M I, et al. Explosive compaction of bimetallic nonconjugated nanoparticles in synthesis of composite materials [J]. Russian Physics Journal, 2019, 61(11): 2142 − 2143. doi: 10.1007/s11182-019-01649-4
|
[11] |
FARINHA A R, MENDES R, BARANDA J, et al. Behavior of explosive compacted/consolidated of nanometric copper powders [J]. Journal of Alloys and Compounds, 2009, 483(1-2): 235 − 238. doi: 10.1016/j.jallcom.2008.08.120
|
[12] |
王金相, 李晓杰, 李瑞勇, 等. 基于尺寸效应的爆炸粉末烧结颗粒间摩擦升温计算[J]. 工程力学, 2005(增刊 1): 52 − 57.
WANG Jinxiang, LI Xiaojie, LI Ruiyong, et al. Calculation of temperature rise of interparticle friction in explosive powder sintering based on size effect [J]. Engineering Mechanics, 2005(Suppl 1): 52 − 57. (in Chinese)
|
[13] |
LA ROCCA E W. Unique structure of pearlite deformed by explosive load [J]. Acta Metallurgica, 1957, 5(7): 408 − 410. doi: 10.1016/0001-6160(57)90013-5
|
[14] |
THORNTON H R, GARRETT D R . Explosive powder metallurgy. II. Processing considerations [J]. Sampe Q, 1977.
|
[15] |
CHEN X, LI X, YAN H, et al. Factors affecting explosive compaction–sintering of tungsten–copper coating on a copper surface [J]. Journal of Alloys and Compounds, 2017(729): 1201 − 1208.
|
[16] |
MEYERS M A, BENSON D J, OLEVSKY E A. Shock consolidation: Microstructurally-based analysis and computational modeling [J]. Acta Materialia, 1999, 47(7): 2089 − 2108. doi: 10.1016/S1359-6454(99)00083-X
|
[17] |
EL-SOBKY H. Mechanics of explosive welding [M]. Berlin, Germany: Springer Netherlands, 1983.
|
[18] |
BECK J, ALVARADO M, NEMIR D, et al. Shock-wave consolidation of nanostructured bismuth telluride powders [J]. Journal of Electronic Materials, 2015, 41(6): 1595 − 1600.
|
[19] |
ZHOU Q, CHEN P, ZHOU B. The effect of heat treatment on the dynamic behavior of explosively consolidated Ni/Al composites [C]// APS Shock Compression of Condensed Matter Meeting Abstracts. St Louis, MO, USA, AIP Publishing, 2017.
|
[20] |
付艳恕, 孙宇新, 王金相, 等. 双管-中心杆爆炸烧结对改进烧结体质量的实验研究[J]. 实验力学, 2008(5): 463 − 468.
FU Yanshu, SUN Yuxin, WANG Jinxiang, et al. Experimental study on the improvement of sintered mass by double tube and center rod explosive sintering [J]. Journal of Experimental Mechanics, 2008(5): 463 − 468. (in Chinese)
|
[21] |
李晓杰, 王占磊, 谢兴华, 等. WC/Al2O3颗粒增强Cu基复合材料爆炸粉末烧结实验研究[J]. 爆炸与冲击, 2006(4): 356 − 360. doi: 10.3321/j.issn:1001-1455.2006.04.012
LI Xiaojie, WANG Zhanlei, XIE Xinghua, et al. Experimental study on explosive powder sintering of WC/Al2O3 particles reinforced Cu matrix composites [J]. Explosion and Shock Waves, 2006(4): 356 − 360. (in Chinese) doi: 10.3321/j.issn:1001-1455.2006.04.012
|
[22] |
桑圣军, 郭浩哲, 李斌, 等. 爆速对纳米铝粉爆炸烧结性能的影响[J]. 高压物理学报, 2018, 32(2): 67 − 73.
SANG Shengjun, GUO Haozhe, LI Bin, et al. Effect of detonation velocity on explosive sintering properties of nano aluminum powder [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 67 − 73. (in Chinese)
|
[23] |
朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428
ZHU Xiang, YIN Yao, WANG Rui, et al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
|
[24] |
熊仲明, 冯成帅. 大跨钢结构安全性模糊综合评估方法的应用研究[J]. 工程力学, 2011, 28(4): 128 − 133.
XIONG Zhongming, FENG Chengshuai. Application research of fuzzy comprehensive evaluation method for safety of long-span steel structures [J]. Engineering Mechanics, 2011, 28(4): 128 − 133. (in Chinese)
|
[25] |
殷琰, 陈海波, 巨阳. 退火处理对紫铜组织和机械性能影响的试验研究[J]. 工程力学, 2018, 35(6): 222 − 230. doi: 10.6052/j.issn.1000-4750.2017.02.0116
YIN Yan, CHEN Haibo, JU Yang. Experimental research on the effect of annealed treatment in microstructure and mechanical properties of pure copper [J]. Engineering Mechanics, 2018, 35(6): 222 − 230. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0116
|
[26] |
GB/T 7314−2017, 金属材料 室温压缩试验方法 [S]. 北京: 中国标准出版社, 2017.
GB/T 7314−2017, Metallic materials—Compression test method at room temperature [S]. Beijing: China Standards Press, 2017. (in Chinese)
|
[27] |
李金平, 杨付, 郭杏林. 多孔微晶玻璃的烧结及其弹性模量研究[J]. 硅酸盐学报, 1999(3): 109 − 114.
LI Jinping, YANG Fu, GUO Xinglin. Study on sintering and elastic modulus of porous glass ceramics [J]. Journal of the Chinese Ceramic Society, 1999(3): 109 − 114. (in Chinese)
|