XI Ren-qiang, XU Cheng-shun, DU Xiu-li, XU Kun. EFFECTS OF WIND-WAVE LOADINGS ON THE SEISMIC RESPONSE OF OFFSHORE WIND TURBINES[J]. Engineering Mechanics, 2020, 37(11): 58-68. DOI: 10.6052/j.issn.1000-4750.2019.12.0715
Citation: XI Ren-qiang, XU Cheng-shun, DU Xiu-li, XU Kun. EFFECTS OF WIND-WAVE LOADINGS ON THE SEISMIC RESPONSE OF OFFSHORE WIND TURBINES[J]. Engineering Mechanics, 2020, 37(11): 58-68. DOI: 10.6052/j.issn.1000-4750.2019.12.0715

EFFECTS OF WIND-WAVE LOADINGS ON THE SEISMIC RESPONSE OF OFFSHORE WIND TURBINES

More Information
  • Received Date: December 02, 2019
  • Revised Date: February 29, 2020
  • Available Online: May 24, 2020
  • Considering the operational and parked states, a generalized single degree of freedom model was established to explore the influence mechanism of wind-wave loadings on the seismic response of offshore wind turbines (OWTs). The statistical relationship between the wind and wave was employed to determine the parameters of the power spectra of the wave. Subsequently, the seismic response of the NREL 5MW OWT was analyzed using FAST to validate the conclusions of the preliminary analysis and evaluate the effects of wind-wave loadings on the seismic response of OWTs. The results reveal that the aerodynamic damping and dynamic loading effects of the wind and wave had a significant influence on the seismic response of OWTs. For wind turbines in the operational state, the support structure is the most dangerous when the mean wind speed of hub-height equals to the rated speed. In addition, the wind-wave loadings reduce the internal force of the mudline and tower-top displacement under the excitation of strong earthquakes. However, they increase the internal forces and displacement amplitudes at these locations while the OWT is excited by a weak earthquake.
  • [1]
    Manwell J F, McGowan J G, Rogers A L. Wind energy explained: theory, design and application [M]. Wiltshire: John Wiley & Sons, 2010: 449 − 504.
    [2]
    Germanischer Lloyd. Guideline for the certification of offshore wind turbines [S]. Hamburg: Germanischer Lloyd, 2005.
    [3]
    IEC 61400−1. Wind turbines part 1: Design requirements [S]. Geneva, Switzerland: International Electrotechnical Commission, 2014.
    [4]
    DNV-OS-J101, Design of offshore wind turbine structures [S]. Oslo: Det Norske Veritas, 2013.
    [5]
    Mardfekri M, Gardoni P. Multi-hazard reliability assessment of offshore wind turbines [J]. Wind Energy, 2015, 18(8): 1433 − 1450. doi: 10.1002/we.1768
    [6]
    Zheng X Y, Li H, Rong W, et al. Joint earthquake and wave action on the monopile wind turbine foundation: An experimental study [J]. Marine Structures, 2015, 44(1): 125 − 141.
    [7]
    Alati N, Failla G, Arena F. Seismic analysis of offshore wind turbines on bottom-fixed support structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015(373): 1 − 22.
    [8]
    Yang Y, Bashir M, Li C, et al. Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation [J]. Ocean Engineering, 2019(178): 215 − 228.
    [9]
    Asareh M A, Schonberg W, Volz J. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines [J]. Renewable Energy, 2016(86): 49 − 58.
    [10]
    Witcher D. Seismic analysis of wind turbines in the time domain [J]. Wind Energy, 2010, 8(1): 81 − 91.
    [11]
    彭超. 风力发电机组地震动力响应分析[J]. 太阳能学报, 2016, 37(12): 3189 − 3194.

    Peng Chao. Seismic dynamic response analysis of wind turbine [J]. Acta Energiae Solaris Sinica, 2016, 37(12): 3189 − 3194. (in Chinese)
    [12]
    Yuan C, Chen J, Li J, et al. Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads [J]. Renewable Energy, 2017(113): 1122 − 1134.
    [13]
    Prowell I, Elgamal A, Uang C M, et al. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects [J]. Wind Energy, 2014, 17(7): 997 − 1016. doi: 10.1002/we.1615
    [14]
    Yang Y, Ye K, Li C, et al. Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity [J]. Wind Energy, 2018, 21(5): 303 − 319. doi: 10.1002/we.2163
    [15]
    席仁强, 许成顺, 杜修力, 等. 工作状态对风力发电机地震响应的影响[J]. 工程力学, 2019, 36(4): 80 − 88.

    Xi Renqiang, Xu Chengshun, Du Xiuli, et al. Effects of operating conditions on the seismic response of wind turbines [J]. Engineering Mechanics, 2019, 36(4): 80 − 88. (in Chinese)
    [16]
    Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5 MW reference wind turbine for offshore system development [R] Colorado: National Renewable Energy Laboratory, 2009: 1 − 75.
    [17]
    Modes C. User’s guide to BModes [R]. Colorado: National Renewable Energy Laboratory, 2007: 1 − 24.
    [18]
    贺广零, 仲政. 风浪联合作用下的海上单桩基础风力发电机组动力响应分析[J]. 电力建设, 2012, 33(5): 1 − 7. doi: 10.3969/j.issn.1000-7229.2012.05.001

    He Guangling, Zhong Zheng. Dynamic response analysis of offshore wind turbine systems with monopile foundation under combined wind and wave loads [J]. Electric Power Construction, 2012, 33(5): 1 − 7. (in Chinese) doi: 10.3969/j.issn.1000-7229.2012.05.001
    [19]
    Bredmose H, Larsen S E, Matha D, et al. Collation of offshore wind-wave dynamics [R]. Copenhagen: Technical University of Denmark, 2012: 1 − 51.
    [20]
    Fisher T, deVries W, Schmidt B. UpWind deliverable, design basis WP4: Offshore foundations and support structures-UpWind project [R]. Stuttgart: University of Stuttgart, 2010: 1 − 139.
    [21]
    Li Q, Yang W. An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake [J]. Ocean Engineering, 2013, 72(11): 241 − 256.
    [22]
    Arany L, Bhattacharya S, Macdonald J H G, et al. Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI [J]. Soil Dynamics & Earthquake Engineering, 2016(83): 18 − 32.
    [23]
    Passon P. Derivation and description of the soil-pile interaction models [R]. Stuttgart: University of Stuttgart, 2006: 1 − 9.
    [24]
    Mo R, Kang H G, Li M, et al. Seismic fragility analysis of monopile offshore wind turbines under different operational conditions [J]. Energies, 2017, 10(7): 1037 − 1058. doi: 10.3390/en10071037
    [25]
    Shirzadeh R, Devriendt C, Bidakhvidi M A, et al. Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013(120): 96 − 106.
    [26]
    季亮, 祝磊, 姚小芹, 等. 现有风力发电机组地震作用计算方法对5 MW风力发电机组的适用性研究[J]. 太阳能学报, 2014, 35(11): 2300 − 2305. doi: 10.3969/j.issn.0254-0096.2014.11.035

    Ji Liang, Zhu Lei, Yao Xiaoqin, et al. Applicability of existing seismic calculation methods for wind turbines on a 5 MW of wind turbine [J]. Acta Energiae Solaris Sinica, 2014, 35(11): 2300 − 2305. (in Chinese) doi: 10.3969/j.issn.0254-0096.2014.11.035
    [27]
    Valamanesh V, Myers A T. Aerodynamic damping and seismic response of horizontal axis wind turbine towers [J]. Journal of Structural Engineering, 2014, 140(11): 04014090-1 − 04014090-9.
    [28]
    Chen C, Duffour P. Modelling damping sources in monopile-supported offshore wind turbines [J]. Wind Energy, 2018, 21(11): 1121 − 1140. doi: 10.1002/we.2218
    [29]
    GB 50011−2011, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2011, Code for seismic design of building [S]. BeiJing: China Architecture & Building Press, 2010. (in Chinese).
    [30]
    Hansen M O L. Aerodynamics of wind turbines [M]. London: Earthscan, 2015: 1 − 173.
    [31]
    Jonkman J M, Buhl Jr M L. Fast user’s guide [R]. Colorado: National Renewable Energy Laboratory, 2005: 1 − 143.
    [32]
    Santangelo F, Failla G, Arena F, et al. On time-domain uncoupled analyses for offshore wind turbines under seismic loads [J]. Bulletin of Earthquake Engineering, 2018, 16(2): 1007 − 1040. doi: 10.1007/s10518-017-0191-x
  • Related Articles

    [1]CHEN Yuan-kun, LI Ting, LU Yi-yan, SONG Jie, LI Hong-sheng, CHEN Xiao-qiang. AERODYNAMIC CHARACTERISTICS AND INTERFERENCE EFFECT OF DRUM-SHAPED HIGH-RISE BUILDINGS[J]. Engineering Mechanics, 2024, 41(8): 68-79. DOI: 10.6052/j.issn.1000-4750.2022.06.0547
    [2]FEI Yi-fan, TIAN Yuan, HUANG Yu-li, LU Xin-zheng. INFLUENCE OF DAMPING MODELS ON DYNAMIC ANALYSES OF A BASE-ISOLATED COMPOSITE STRUCTURE UNDER EARTHQUAKES AND ENVIRONMENTAL VIBRATIONS[J]. Engineering Mechanics, 2022, 39(3): 201-211. DOI: 10.6052/j.issn.1000-4750.2021.07.0500
    [3]SUN Ya-qiong, ZHAO Zuo-zhou. REAL-TIME SEPERATION OF TEMPERATURE EFFECT ON DYNAMIC STRAIN MONITORING AND MOVING LOAD IDENTIFICATION OF BRIDGE STRUCTURE[J]. Engineering Mechanics, 2019, 36(2): 186-194. DOI: 10.6052/j.issn.1000-4750.2017.12.0954
    [4]ZHANG Jun-feng, GE Yao-jun, ZHAO Lin. INTERFERENCE EFFECTS ON GLOBAL WIND LOADS AND WIND INDUCED RESPONSES FOR GROUP HYPERBOLOIDAL COOLING TOWERS[J]. Engineering Mechanics, 2016, 33(8): 15-23,44. DOI: 10.6052/j.issn.1000-4750.2015.03.0226
    [5]GUO Wei-wei, XIA He, ZHANG Tian. ANALYSIS ON AERODYNAMIC EFFECTS OF BRIDGE WIND BARRIER AND ITS INFLUENCE ON RUNNING SAFETY OF A HIGH-SPEED TRAIN[J]. Engineering Mechanics, 2015, 32(8): 112-119. DOI: 10.6052/j.issn.1000-4750.2014.11.0062
    [6]ZHANG Li-hong, LIU Tian-yun, LI Qing-bin, CHEN Tao. MODIFIED DYNAMIC CONTACT FORCE METHOD UNDER RECIPROCATING LOAD[J]. Engineering Mechanics, 2014, 31(7): 8-14. DOI: 10.6052/j.issn.1000-4750.2013.01.0082
    [7]CAO Hui-lan, QUAN Yong, GU Ming. EFFECT OF CORNER-CUT AND TAPERING ON ACROSS-WIND AERODYNAMIC DAMPING OF SQUARE HIGH-RISE BUILDINGS[J]. Engineering Mechanics, 2013, 30(11): 87-93,100. DOI: 10.6052/j.issn.1000-4750.2012.07.0547
    [8]LU Xiao-cong, XU Jin-yu, ZHAO De-hui, GE Hong-hai. RESEARCH ON CONFINING PRESSURE EFFECT OF SANDSTONE DYNAMIC MECHANICAL PERFORMANCE UNDER THE CYCLICAL IMPACT LOADINGS[J]. Engineering Mechanics, 2011, 28(1): 138-144.
    [9]LIU Qing-kuan, MA Wen-yong, SHENG Yong-qing, HOU Li-qian. WIND LOAD EXPERIMENTAL INVESTIGATION OF INTERFERENCE EFFECTS ON A DOUBLE TOWER STRUCTURE[J]. Engineering Mechanics, 2011, 28(增刊I): 75-079.
    [10]YUE Qian-jin, DU Xiao-zhen, BI Xiang-jun, ZHANG Xi. DYNAMIC ICE LOADS DURING INTERACTION WITH VERTICAL COMPLIANT STRUCTURES[J]. Engineering Mechanics, 2004, 21(1): 202-208.

Catalog

    Article Metrics

    Article views (1031) PDF downloads (170) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return