WANG Peng-peng, GUO Xiao-xia, SANG Yong, SHAO Long-tan, CHEN Zhi-xiang, ZHAO Bo-ya. FULL-FIELD DEFORMATION MEASUREMENT OF SAND USING THE DIGITAL IMAGE CORRELATION TECHNIQUE AND NUMERICAL SIMULATION USING THE DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2020, 37(1): 239-247. DOI: 10.6052/j.issn.1000-4750.2019.02.0050
Citation: WANG Peng-peng, GUO Xiao-xia, SANG Yong, SHAO Long-tan, CHEN Zhi-xiang, ZHAO Bo-ya. FULL-FIELD DEFORMATION MEASUREMENT OF SAND USING THE DIGITAL IMAGE CORRELATION TECHNIQUE AND NUMERICAL SIMULATION USING THE DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2020, 37(1): 239-247. DOI: 10.6052/j.issn.1000-4750.2019.02.0050

FULL-FIELD DEFORMATION MEASUREMENT OF SAND USING THE DIGITAL IMAGE CORRELATION TECHNIQUE AND NUMERICAL SIMULATION USING THE DISCRETE ELEMENT METHOD

More Information
  • Received Date: February 20, 2019
  • Revised Date: May 21, 2019
  • Geotechnical materials are characterized of anisotropy and nonlinearity. Different composition leads to different deformation in soil. In order to measure the actual deformation of soil in the plane strain condition, a new plane strain testing apparatus was used to apply flexible pressure to the lateral sides of specimens. Unlike rigid loading, this loading method reduces the influence of boundary constraints. At the same time, a digital image measuring system was combined with this apparatus to obtain the surface deformation of specimens. The 2D digital image correlation (2D-DIC) technique was used to measure the full-field deformation of Fujian (China) sand in different confining pressures. In addition, microscopic parameters of the rolling resistance linear model in the discrete element method (DEM) were calibrated by using the experimental results, and the experiments were simulated by using DEM. Results show that the new plane stain testing apparatus combined with the 2D-DIC technique can not only obtain the local deformation distribution of Fujian (China) sand but also obtain the asymmetric deformation directly. Furthermore, the calibrated microscopic parameters can truly represent the stress-strain relationship of the tested specimens.
  • [1]
    Thomas T. Plastic flow and fracture in solids[J]. Journal of Mathematics and Mechanics, 1958, 7:291-322.
    [2]
    Shao L T, Liu G, Zeng F T, et al. Recognition of the stress-strain curve based on the local deformation measurement of soil specimens in the triaxial test[J]. Geotechnical Testing Journal, 2016, 39(4):658-672.
    [3]
    Zhang X, Li L, Chen G, et al. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing[J]. Acta Geotechnica, 2014, 10(1):55-82.
    [4]
    杨智勇, 曹子君, 李典庆, 等. 颗粒接触摩擦系数空间变异性对颗粒流双轴数值试验的影响[J]. 工程力学, 2017, 34(5):235-246. Yang Zhiyong, Cao Zijun, Li Dianqing, et al. Effect of spatially variable friction coefficient of granular materials on its Macro-mechanical behaviors using biaxial compression numerical simulation[J]. Engineering Mechanics, 2017, 34(5):235-246. (in Chinese)
    [5]
    姜浩, 徐明. 碎石料应力路径大型三轴试验的离散元模拟研究[J]. 工程力学, 2014, 31(10):151-157, 180. Jiang Hao, Xu Ming. Study of stress-pathdependent behavior of rockfills using discrete element method[J]. Engineering Mechanics, 2014, 31(10):151-157, 180. (in Chinese)
    [6]
    Medina-Cetina Z, Rechenmacher A. Influence of boundary conditions, specimen geometry and material heterogeneity on model calibration from triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6):627-643.
    [7]
    Scholey G K, Frost J D, Presti D L, et al. A review of instrumentation for measuring small strains during triaxial testing of soil specimens[J]. Geotechnical Testing Journal, 1995, 18(2):137-156.
    [8]
    陈超斌, 叶冠林. 基于LVDT的小应变三轴仪研制及其软土试验应用[J]. 岩土力学, 2018, 39(6):2304-2310. Chen Chaobin, Ye Guanlin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test[J]. Rock and Soil Mechanics, 2018, 39(6):2304-2310. (in Chinese)
    [9]
    Alikarami R, Andò E, Gkiousas-Kapnisis M, et al. Strain localisation and grain breakage in sand under shearing at high mean stress:insights from in situ X-ray tomography[J]. Acta Geotechnica, 2014, 10(1):15-30.
    [10]
    姚志华, 陈正汉, 李加贵, 等. 基于CT技术的原状黄土细观结构动态演化特征[J]. 农业工程学报, 2017, 33(13):134-142. Yao Zhihua, Chen Zhenghan, Li Jiangui, et al. Meso-structure dynamic evolution characteristic of undisturbed loess based on CT technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13):134-142. (in Chinese)
    [11]
    Cheng Z, Wang J. Quantification of the strain field of sands based on X-ray micro-tomography:A comparison between a grid-based method and a mesh-based method[J]. Powder Technology, 2019, 344:314-334.
    [12]
    周健, 史旦达, 吴峰, 等. 基于数字图像技术的砂土液化可视化动三轴试验研究[J]. 岩土工程学报, 2011, 33(1):81-87. Zhou Jian, Shi Danda, Wu Feng, et al. Visualized cyclic triaxial tests on sand liquefaction using digital imaging technique[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):81-87. (in Chinese)
    [13]
    Mousa A. Revisiting the Calibration Philosophy of Constitutive Models in Geomechanics[J]. International Journal of Geomechanics, 2017, 17(8):06017002.
    [14]
    Sun L, Abolhasannejad V, Gao L, et al. Non-contact optical sensing of asphalt mixture deformation using 3D stereo vision[J]. Measurement, 2016, 85:100-117.
    [15]
    Li L, Zhang X. Factors influencing the accuracy of the photogrammetry-based deformation measurement method[J]. Acta Geotechnica, 2019, 14(2):559-574.
    [16]
    Sutton M, Wolters W, Peters W, et al. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing, 1983, 1(3):133-139.
    [17]
    Pan B, Dafang W, Yong X. Incremental calculation for large deformation measurement using reliability-guided digital image correlation[J]. Optics and Lasers in Engineering, 2012, 50(4):586-592.
    [18]
    Keane R D, Adrian R J. Theory of cross-correlation analysis of PIV images[J]. Applied scientific research, 1992, 49(3):191-215.
    [19]
    Tang Y, Okubo S, Xu J, et al. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation[J]. Engineering Geology, 2019, 249(31):172-185.
    [20]
    王学滨, 杜亚志, 潘一山, 等. 基于数字图像相关方法的等应变率下不同含水率砂样剪切带观测[J]. 岩土力学, 2015, 36(3):625-632. Wang Xuebin, Du Yazhi, Pan Yishan, et al. Measurement of shear bands of sand specimens with different water contents under constant strain rate based on digital image correlation method[J]. Rock and Soil Mechanics, 2015, 36(3):625-632. (in Chinese)
    [21]
    Yang C, Wei J, Huang H, et al. Application of 3D-DIC to characterize the effect of aggregate size and volume on non-uniform shrinkage strain distribution in concrete[J]. Cement and Concrete Composites, 2018, 86:178-189.
    [22]
    赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
    [23]
    肖军华, 张德, 王延海, 等. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. 工程力学, 2018, 35(9):170-179. Xiao Junhua, Zhange De, Wang Yanhai, et al. Study on interface stress between ballast and subgrade for traditional railway based on coupled DEM-FDM[J]. Engineering Mechanics, 2018, 35(9):170-179. (in Chinese)
    [24]
    胡光辉, 徐涛, 陈崇枫, 等. 基于离散元法的脆性岩石细观蠕变失稳研究[J]. 工程力学, 2018, 35(9):26-36. Hu Guanghui, Xu Tao, Chen Chongfeng, et al. A microscopic study of creep and fracturing of brittle rocks based on discrete element method[J]. Engineering Mechanics, 2018, 35(9):26-36. (in Chinese)
    [25]
    Zhang F, Li M, Ming P, et al. Three-dimensional DEM modeling of the stress-strain behavior for the gap-graded soils subjected to internal erosion[J]. Acta Geotechnica, 2019, 14(2):487-503.
    [26]
    唐欣薇, 黄文敏, 周元德, 等. 华南风化花岗岩劈拉断裂行为的试验与细观模拟研究[J]. 工程力学, 2017, 34(6):246-256. Tang Xinwei, Huang Wenmin, Zhou Yuande, et al. Experimental and meso-scale numerical modeling of splitting tensile behavior of weathered granites from south China[J]. Engineering Mechanics, 2017, 34(6):246-256. (in Chinese)
    [27]
    Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement:a review[J]. Measurement Science and Technology, 2009, 20(6):062001.
    [28]
    Pan B, Xie H, Wang Z. Equivalence of digital image correlation criteria for pattern matching[J]. Applied Optics, 2010, 49(28):5501-5509.
    [29]
    Jiang M, Yu H, Harris D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5):340-357.
    [30]
    Wang Y, Leung S. A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1):29-44.
    [31]
    蒋明镜, 张望城, 孙渝刚, 等. 理想胶结砂土力学特性及剪切带形成的离散元分析[J]. 岩土工程学报, 2012, 34(12):2162-2169. Jiang Mingjing, Zhang Wangcheng, Sun Yugang, et al. Mechanical behavior and shear band formation in idealized cemented sands by DEM[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12):2162-2169. (in Chinese)
  • Related Articles

    [1]LI Tao, LI Ao, LI Hai-chao. DISCRETE ELEMENT ANALYSES ON THE MICROSCOPIC MECHANISM OF STRENGTH BEHAVIOR FOR WEAKLY CEMENTED SAND[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.08.0579
    [2]WANG Xuan, XU Ming. DISCRETE ELEMENT SIMULATION OF THE SHEAR BEHAVIOR OF CEMENTED METHANE HYDRATE-BEARING SANDS[J]. Engineering Mechanics, 2021, 38(2): 44-51. DOI: 10.6052/j.issn.1000-4750.2020.03.0174
    [3]YE Ji-hong, WANG Jia. APPLICATION OF GPU-BASED PARALLEL COMPUTING METHOD FOR DEM IN LARGE ENGINEERING STRUCTURES[J]. Engineering Mechanics, 2021, 38(2): 1-7. DOI: 10.6052/j.issn.1000-4750.2020.07.ST03
    [4]YE Ji-hong, ZHANG Mei. Discrete element method for elastoplastic buckling analysis of single-layer reticulated shells[J]. Engineering Mechanics, 2019, 36(7): 30-37,47. DOI: 10.6052/j.issn.1000-4750.2018.10.0374
    [5]QI Nian, YE Ji-hong. APPLICATION OF ELASTIC DISCRETE ELEMENT METHOD IN MEMBER STRUCTURES[J]. Engineering Mechanics, 2017, 34(7): 11-20. DOI: 10.6052/j.issn.1000-4750.2016.02.0116
    [6]JING Guo-qing, WANG Zi-jie, SHI Xiao-yi. BALLAST TRIAXIAL TESTS AND NON-BREAKABLE PARTICLE DISCRETE ELEMENT METHOD ANALYSIS UNDER DIFFERENT CONFINING PRESSURES[J]. Engineering Mechanics, 2015, 32(10): 82-88. DOI: 10.6052/j.issn.1000-4750.2014.03.0205
    [7]JIANG Hao, XU Ming. STUDY OF STRESS-PATH-DEPENDENT BEHAVIOR OF ROCKFILLS USING DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2014, 31(10): 151-157,180. DOI: 10.6052/j.issn.1000-4750.2013.04.0382
    [8]LI Zeng-zhi;;BIE She-an;REN Zeng-jin. STABLITY ANALYSIS OF RUBBLE MOUND BREAKWATER BY DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2009, 26(增刊Ⅰ): 111-114.
    [9]JIN Wei-liang, FANG Tao. NUMERICAL SIMULATION OF FAILURE BEHAVIOR OF REINFORCED CONCRETE FRAME STRUCTURES BY DISCRETE ELEMENT METHOD[J]. Engineering Mechanics, 2005, 22(4): 67-73.
    [10]Chen Jin, Chen Xiangfu. Boundary Element Method for Non-linear analysis the Progressive Failure of Rock Engineering[J]. Engineering Mechanics, 1991, 8(4): 128-137.
  • Cited by

    Periodical cited type(22)

    1. 张子真. 数字图像相关技术测量位移的算法和试验研究. 城市勘测. 2024(01): 156-160+164 .
    2. 牟春梅,李刘悦,夏燚. 基于摄影测量的三轴土体剪切带演化规律. 工程科学学报. 2024(05): 927-936 .
    3. 蔡娇,黄子恒,吴静,牟春梅. 影响三轴摄影测量试验精度的折射误差分析. 人民长江. 2024(03): 212-217 .
    4. 罗林,罗莉,陈海军,杨勇. 岩土工程试验中数字图像测量技术的应用探析. 中国住宅设施. 2024(03): 31-33 .
    5. 杨子涵,舒江鹏,杨静滢,李俊,白勇. 基于DIC技术的钢筋混凝土梁剪切裂缝自动提取与量化方法. 工程力学. 2024(S1): 187-196 . 本站查看
    6. 陶恩生. 不同围压下煤岩力学三轴试验研究. 煤矿现代化. 2024(05): 14-19 .
    7. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    8. 杨晓峰,李伟,姚兆明. 基于PIV技术的冲刷条件下桩-土水平变形机制. 长江科学院院报. 2023(02): 102-108 .
    9. 赵爽,张东,聂广超,杨政彦,张小明. 基于数字图像相关的切削加工剪切区应变率监测调控研究. 航空制造技术. 2023(06): 42-49 .
    10. 肖维忠,葛振东,袁莹涛,郭翔. 基于散斑图像梯度域的数字图像相关盲去模糊方法. 工程力学. 2023(04): 226-232 . 本站查看
    11. 周子健,齐昌广,孔纲强,钟方涛,张智超,赖文杰. 自升式钻井平台桩靴贯入饱和砂土的机制研究. 工程力学. 2023(06): 144-157 . 本站查看
    12. 罗凯,张小勇,陈家勋,徐美娟,梅国雄. 既有竖向荷载对承台桩水平承载特性影响的PIV试验研究. 河北工程大学学报(自然科学版). 2023(02): 1-8 .
    13. 叶锴,夏燚,牟春梅. 三维折射修正模型在土样变形测量中的应用. 人民长江. 2023(07): 172-179 .
    14. 齐消寒,侯双荣,马恒,王品,刘阳,张向明. 基于图形测量技术的煤岩力学三轴试验研究. 力学季刊. 2023(03): 739-749 .
    15. 牟春梅,夏燚,李文杰,黄少染. 基于摄影测量技术的三轴土样体积变化. 江苏大学学报(自然科学版). 2023(06): 725-730 .
    16. 王子寒,张若钰,景晓昆,肖成志,黄达. 砂土可视化直剪试验与剪切带形成机制研究. 工程力学. 2022(07): 217-226 . 本站查看
    17. 王冬勇,陈曦,王方宇,彭丽云,齐吉琳. 基于罚函数偶应力理论的土体应变局部化研究. 岩土力学. 2022(S2): 533-540 .
    18. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 .
    19. 付巍. 基于数字图像技术的相似材料试样破坏试验研究. 煤矿安全. 2021(08): 39-43+50 .
    20. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 .
    21. 马少坤,韦榕宽,邵羽,黄震,段智博. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用. 岩土工程学报. 2021(10): 1798-1806+1958 .
    22. 牟春梅 ,吴浩杰 ,黄少染 ,周子良 . 基于数字图像测量的三轴土样变形测量方法综述. 桂林理工大学学报. 2021(04): 823-830 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (557) PDF downloads (112) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return