Citation: | YIN Fei, ZHOU Hui, WANG Yuan-qing, LIAO Xiao-wei, YANG Lu. FRACTURE PROPERTIES OF BUTT WELD OF A572 Gr.50 THICK STEEL PLATES[J]. Engineering Mechanics, 2018, 35(6): 42-51. DOI: 10.6052/j.issn.1000-4750.2017.06.0430 |
[1] |
ASTM A572/A572M-2007, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel[S]. ASTM, West Conshohocken:2007.
|
[2] |
袁虎贲, 龚海涛. 凯迪生物质能发电电厂工程大板梁制造工艺方法[J]. 工业建筑, 2012, 42(增刊):617-620. Yuan Huben, Gong Haitao. Manufacturing process and methods of large panel beams for KAIDI biomass power plant project[J]. Industrial Construction, 2012, 42(Suppl):617-620. (in Chinese)
|
[3] |
Kuwamura H, Iyama J, Matsui K. Effects of material toughness and plate thickness on brittle fracture of steel members[J]. Journal of Structural Engineering, 2003, 129(11):1475-1483.
|
[4] |
Irwin G R. Analysis of stresses and strains near the end of a crack transversing a plate[J]. Transactions, ASME, Journal of Applied Mechanics, 1957, 24(3):361-364.
|
[5] |
Rice J R, Rosengren G F. Plane strain deformation near a crack tip in a power law hardening material[J]. J. Mech. Phys. Solids, 1968, 16(1):1-12.
|
[6] |
Wells A A. Application of fracture mechanics at/and beyond general yielding[J]. British Welding Journal, 1963, 10:563-570.
|
[7] |
Moustabchir H, Pruncu C I, Azari Z, et al. Fracture mechanics defect assessment diagram on pipe from steel P264GH with a notch[J]. International Journal of Mechanics & Materials in Design, 2015, 12(2):1-12.
|
[8] |
Moustabchir H, Zitouni A, Hariri S, et al. Experimentalnumerical characterization of the fracture Behaviour of P264GH steel notched pipes subject to internal pressure[J]. Iranian Journal of Science & Technology Transactions of Mechanical Engineering, 2018, 42(2):107-115.
|
[9] |
Zhou H, Shi G, Wang Y, et al. Fatigue evaluation of a composite railway bridge based on fracture mechanics through global-local dynamic analysis[J]. Journal of Constructional Steel Research, 2016, 122:1-13.
|
[10] |
王元清, 廖小伟, 周晖, 等. 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34(5):42-51. Wang Yuanqing, Liao Xiaowei, Zhou Hui, et al. Safety assessment of steel structure component with crack defects using SINTAP-FAD method[J]. Engineering Mechanics, 2017, 34(5):42-51. (in Chinese)
|
[11] |
胡方鑫, 施刚, 石永久. 基于断裂力学的高强度钢材梁柱节点受力性能分析[J]. 工程力学, 2015, 32(4):41-46. Hu Fangxin, Shi Gang, Shi Yongjiu. Fracture behavior of beam-column connections using high strength steel based on fracture mechanics[J]. Engineering Mechanics, 2015, 32(4):41-46. (in Chinese)
|
[12] |
傅宇光, 童乐为, 刘博. 基于Beach Marking方法的钢结构疲劳裂纹检测研究[J]. 工程力学, 2016, 33(8):93-100. Fu Yuguang, Tong Lewei, Liu Bo. Research on detection of fatigue crack propagation of steel structures based on Beach Marking technique[J]. Engineering Mechanics, 2016, 33(8):93-100. (in Chinese)
|
[13] |
王元清, 胡宗文, 石永久, 等. 钢结构厚板对接焊缝低温冲击韧性试验研究[J]. 铁道科学与工程学报, 2010, 7(5):1-5. Wang Yuanqing, Hu Zongwen, Shi Yongjiu, et al. Experimental study on the impact toughness of thick plate butt weld of steel structure at low temperature[J]. Journal of Railway Science and Engineering, 2010, 7(5):1-5. (in Chinese)
|
[14] |
王元清, 周晖, 石永久, 等. 基于裂纹扩展阻力曲线的钢结构构件断裂行为评估模型[J]. 清华大学学报(自然科学版), 2013, 53(5):595-600. Wang Yuanqing, Zhou Hui, Shi Yongjiu, et al. Fracture behavior evaluation model for steel structural components based on crack extension resistance curves[J]. Journal of Tsinghua University (Science and Techbology), 2013, 53(5):595-600. (in Chinese)
|
[15] |
王元清, 周晖, 胡宗文, 等. 钢结构厚板对接焊缝的低温断裂韧性试验[J]. 哈尔滨工业大学学报, 2012, 44(6):115-120. Wang Yuanqing, Zhou Hui, Hu Zongwen, et al. experimental study on fracture toughness of butt weld in thick plate steel structures at low temperature[J]. Journal of Harbin Institute of Technology, 2012, 44(6):115-120. (in Chinese)
|
[16] |
廖小伟, 王元清, 周晖, 等. 锅炉钢结构大板梁构造焊接接头的力学和断裂韧性试验[J]. 铁道科学与工程学报, 2016, 13(9):1803-1809. Liao Xiaowei, Wang Yuanqing, Zhou Hui, et al. Experimental study on mechanical properties and fracture toughness of the simulated welded joint of big plate girder employed in boiler steel structure[J]. Journal of Railway Science and Engineering, 2016, 13(9):1803-1809. (in Chinese)
|
[17] |
Wang Y Q, Liao X W, Zhang Y Y, et al. Experimental study on the through-thickness properties of structural steel thick plate and its heat-affected zone at low temperatures[J]. Journal of Zhejiang University Science A (Applied Physics & Engineering), 2015, 16(3):217-228.
|
[18] |
GB/T 228-2002, 金属材料室温拉伸试验方法[S]. 北京:中国标准出版社, 2002. GB/T 228-2002, Metallic materials-Tensile testing at ambient temperature[S]. Beijing:China Standards Press, 2002. (in Chinese)
|
[19] |
GB/T 13239-2006, 金属材料低温拉伸试验方法[S]. 北京:中国标准出版社, 2007. GB/T 13239-2006, Metallic materials-Tensile testing at low temperature[S]. Beijing:China Standards Press, 2006. (inChinese)
|
[20] |
GB/T 2650-2008, 焊接接头冲击试验方法[S]. 北京:中国标准出版社, 2008. GB/T 2650-2008, Impact test methods on welded joints[S]. Beijing:China Standards Press, 1994. (in Chinese)
|
[21] |
GB/T 21143-2007, 金属材料准静态断裂韧度的统一试验方法[S]. 北京:中国标准出版社, 2008. GB/T 21143-2007, Metallic materials-Unified method of test for determination of quasistatic fracture toughness[S]. Beijing:China Standards Press, 2007. (in Chinese)
|
[22] |
赵建平, 张秀敏, 沈士明. 材料韧脆转变温度数据处理方法探讨[J]. 石油化工设备, 2004, 33(4):29-32. Zhao Jianping, Zhang Xiumin, Shen Shiming. On the method of data processing for ductile-brittle transition temperature[J]. Petro-chemical Equipment, 2004, 33(4):29-32. (in Chinese)
|
[23] |
Barsom J M, Rolfe S T. Fracture and fatigue control in structures:application of fracture mechanics[M]. 3rd ed. West Conshohocken, Pa:ASTM, 1999.
|
[24] |
Anderson T L. Fracture mechanics:Fundamentals and applications[M]. 3rd ed. Boca Raton, Florida:CRC Press, 2005.
|
[25] |
Chi W M, Deierlein G G, Ingraffea A. Fracture toughness demands in welded beam-column moment connections[J]. Journal of Structural Engineering, 2000, 126(1):88-97.
|